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Abstract

This Trident Scholar project involved the synthesis of a swarnratientthat is
suitable for controlling movements of a group of autonomous robots perfprumiderwater
mine countermeasures (UMCM).

The main objective of this research project was to combine beh@sed robot
control methods with systems-theoretic swarm control techniques to acligladthat has the
best characteristics of both.

The sub-goals were:

a) To simulate and study a simplified version of the UMCM proplar@D with basic
robot dynamics and behaviors.

b) To investigate the performance of both behavior-based and syiteanetic
controllers for UMCM, and to determine their advantages and disadvantages.

Careful development of behavior-based methods using a non-traditidieaérdial
equations approach facilitated the hybridization of the two contralleter study, giving rise to
a more functional controller capable of controlling swarm level fanstwhile executing the

appropriate behaviors at the same time.
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Preface

Modeled after colonies of ants or bees, autonomous robots working in cooperation have
the potential of achieving complex functions with increased effigi@ver single-unit methods.
Cheaper, simpler robots that should comprise such a group are potesitdlyle for a wide
assortment of applications in the civil and military environment.

In the recent wars in Afghanistan and Iraqg, robots were uséakéoover dangerous
operations such as surveillance, reconnaissance, mine searchinghencepétitive missions.
Multiple robots working together in a hostile environment may provetthe new paradigm for
a war in which they fight alongside soldiers in the air, on land and the sea.

This Trident Research Project focused on combining some of the amar theories
conceived by other scientists and engineers to achieve a hgnticlter for underwater mine
countermeasures (UMCM). The hybrid controller has the Hemtacteristics of the original
controllers with fewer drawbacks.

Underwater mines, which are cheap, easily fielded and capalgi@using millions of
dollars of damage, pose a major threat to navy ships. Wiénrelevelopments in technology,
the Navy has become interested in employing Unmanned Underviahbérles (UUVS) and
Autonomous Underwater Vehicles (AUVs). The lack of human involvememtkisy factor in
employing robots for this application.

Eventually, robots will be programmed to conduct searches forsnan®nomously
and cooperatively, hence bringing greater automation as weéexoim of reign in water to this
tricky problem. The results outlined in this report serve to denaiesfeatures of certain
techniques as well as highlight a new hybrid controller that megteally be implemented as a

commercially viable controller.
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1. Background

A robotic swarm can be described as a group of simple robotsngockioperatively.
Well-designed swarms ideally perform the same tasks aplermobots, but with increased
efficiency and robustness, to withstand damage and environmentalafloos. These
advantages indicate that swarms of robots may prove to be véwy insthe harsh and taxing
conditions associated with underwater mine countermeasures (UMCM).

Common traditional UMCM methods include using specialized ships, minerspyand
mine sweepers to perform mine clearance operations, or relyigiyvers to defuse mines by
hand. However, sailors are the most important asset to the Bagtythe objective of using
modern technology is to ensure their safety. In the 1990s, Remotat€p¥&ehicles (ROVS)
were used extensively for mine hunting and only in recent yearsdwasnces in computing
capability and understanding of automated craft allowed Autonomous Urdervi@hicles
(AUVs) or Unmanned Underwater Vehicles (UUVs) to become viable alteesat ROVs.

Currently, AUVs are employed on Navy ships, but most deploymesgsonly a single
unit or a pair of cooperating units to carry out simple tasks.ndiease performance in UMCM,
suitable control architectures must be developed for swarm AUVs radivedy carrying out a
deliberate search scheme. Such controllers will offer suiEtancreases in performance in the
critical domain of UMCM, and may be ideal for solving the agepotiblem of undersea mines.
Applying a swarm of robots to mine hunting will improve efficignwiden the search area as
well as reduce the search time, and will be clearly obser¢able@ith humans... more searchers
are better), outweighing the performance of one or two robots. Addimydprid controller may

open up further applications for autonomous deep-sea exploration or disadvéiguid
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environments in other planets. Lastly, the cost of replacing a i®bess should one simple
robot be destroyed as compared to that of a sophisticated one.

Hardware will never work without the software that drives it ghas it intelligence.
Several existing control strategies were considered for apptica maneuvering a swarm. The
two main groups of controls that were studied extensively are \sienss-theoretic and
behavior-based approach&s.

Systems-theoretic methods have provable performance and a wektoodedesign
methodology, but are only viable when the environment is predictablmesid if not all, of the
information about the environment is known. Rigid programming practice®me of these
methods tend to generate pre-planned algorithms that try to contraintédkest behaviors. By
contrast, behavior-based approaches are flexible, simplistic anderegither large amounts of
information nor specific details about the environment; they gse to indeterministic yet
interesting and useful ‘emergent’ outcomes as a result of their interagitbrthie environment.

A highly effective method of controlling multiple robots is thatistical approach, which
is currently best classified as a systems-theoretiontque. The statistical method controls
swarm-level functions (such as the mean and variance of the p¥eadinect the movement of
the robots. During the course of this project, it has been demedsthait there is a possibility
of combining behavior-based and statistical approaches to give e, betbre functional
controller. The new controller generated is able to maneuver and aise@rm of robots more
effectively than either of the constituent methods. That hylatidiza became the primary focus
of this research.

Several requirements were set to select viable and effeatviollers for robotic

UMCM. The first required that the robots be fairly simplesiructure so that, while operating
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individually, they will not be bogged down by computational complexitythigproject, robots
were assumed to be holonomic (able to move in any direction fronp@ss) and velocity
controlled. The next requirement was that the controller had to creat&ensyuch that a fairly
autonomous robot swarm is able to make decisions on its own, without dependingxternal
source of information. To achieve this autonomy, each robot was @dgoicempromise some
personal freedom to contribute to the overall independence of the sWamiralized (each unit
given its orders by a central controller) as well as deakregd (each unit acts independently)
approaches were considered to determine which form of control was more appgbcdMCM.
This paper is organized as follows. An overview of behavior-based robotics, itsmdots a

developments, is given in Section 2, followed by two separateseain the favored behavior-
based structures: Motor Schema (Section 3) and Subsumption (S8ctidrhe relevance of
each method to mine countermeasures is discussed in its respectiva. Section 5 covers the
basics of statistical control and explains some discoveriesaltbated behavior-based methods
to be merged with that architecture. Section 5 also detailsaimponents of the statistical
controller and how they affect its actual operation. Section 6 towchtee hybridization of the
controllers and how it affects the predicted outcomes of thensyasewell as its performance
under simulated environmental effects. Section 7 summarizes thepaidbe research and the

conclusions drawn from it.
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2. Introduction to Behavior-Based Robotics

What exactly are robots? According to the definition given byRleotics Institute of
America (RIA), “a robot is a reprogrammable, multi-functional, rpalator designed to move
material, parts, tools, or specialized devices through variablgrggmoned motions for the
performance of a variety of tasRsRobots involved in this project, however, belong to a more
sophisticated breed.  These Autonomous Underwater Vehicles (AUVsYnonanned
Underwater Vehicles (UUVS) are categorizedirgslligent robots “An intelligent robot is a
machine that is able to extract information from its environmadtse knowledge about its
world to move safely in a meaningful and purposive manhdn’this project, simulated AUVs
and UUVs were employed to detect mines in the highly variabéanic environment, using
information collected to avoid obstacles while at the same ttaging mine information to a
mother ship.

Artificial intelligence plays an important role in enabling robtsbehave in a manner
similar to humans, conducting their own operational decision procdsaes.the robots used in
this project needed to be able to recognize and differentiated®etpieces of information and
make links to the particular tasks designated by the correct information.

Neural networks and fuzzy logic are several common means m@atery human-like
decision structures in robots. These systems are especially useful when mimicking human
decision structures in performing a complex, hard-to-model task. tun&ely, these methods
typically require a great deal of training (generating enough to allow the system to learn and
create a response) to be successful at even the most straightforward tasks.

Behavior-based robotics is a much simpler method of control, baseuke aetision-

making capabilities of lower life forms. The initial phask this project focused on the
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evaluation of behavior-based methods for the UMCM problem. This methodtudied first
because it is known to be a reactive controller that does not resphiseistive amounts of
information. Behavior-based robotics has two main types of gtegcthat make it a versatile
controller for enabling several robots to move in cooperation.

Behavior-based robotic controllers were originally devised for rdhatswvere to be used
in environments that are difficult to model.This class of controllers reacts readily to the
changes in the environment, unlike many traditional systemsetiiearontrol approaches in
which all the unknown information or details in an area have to ¢t@uated for to ensure that
the robotic agents are able to move.

Behavior-based systems, characterized by a reactive natureatgernabot responses
based on current sensory information alone, typically through wa siemple sensor-motor
mapping’ By responding directly to a stimulus, the system effigjediscards all other
environmental factors irrelevant to the problem. Simple low-ldwethaviors (such as
‘Avoid_Obstacle’ or ‘Seek_Light’) are combined to form a modulagroftierarchical, behavior
system, which collectively reacts to a variety of stinmlivarying ways. This combination of
simple behaviors also leads to making the system completely rimiledé¢e. Another interesting
characteristic of behavior-based systems is that in evensehsor breakdown, the robot will
default to a lower-level behavior and perform its task as best as it can.

Behavior-based decision processes do not utilize the human cognittesgrout follow
a simple sense-think-act sequefc&ach robot uses all sensory information it gathers to select
actions guided by specific rules. If each member of a robotnsweere equipped with an
independent behavior-based controller, the members would be able to movendiet¢iye a

highly regarded characteristic, since it places little patational strain on the central controlling
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body. In other words, this type of control is promising for @éngad decentralized autonomous
underwater control system of multiple robots. Behavior-based cordasotherefore an excellent
candidate for generating a fast and efficient means of reacting hostile and unknown

environment for the UMCM problem.

Two specific behavior-based architectures were used fondestid implementation of
robotic UMCM: motor schema and subsumption. Both of these approachesomngnally
designed and intended for single-robot (decentralized) control. Undsr #nehitectures, the
robots each act independently, and the overall swarm behavior anisethéir interactions with
the environment and each other.

The study of schema-based systems was adapted from Dr. Ardbibmade a link
between behavioral expressions in nature and behavior-based controlsoiits: *°** The
schema-based theory combines behaviors for numerous tasksatéime, and demonstrates
how the system can react based on the calculation of simpleceguaDr. Ronald Arkin, who
first addressed the implications of using motor schema for navigat 1987 and later published
several related papers, was the first researcher who foausélde method’s applications on
autonomous robotics. He proposed that motor schema could be set up in such a way tkat ther
were direct relationships between sensors (perception agentshemdotors (end effectors)
present in the system. The behavioral responses were represenctar forms using an
Artificial Potential Fields technique that will be discussed in the nexbsect

The second approach for behavior-based architectures used subsutngptiomes. Dr.
Rodney Brooks of Massachusetts Institute of Technology first deuisedconcept of
subsumption architecture in 1986.Brooks’ proposal was also a purely reactive system, which

allowed the robot to decide what to do next, based entirely on cuemsarsdata, without any
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structured planning® Subsumption-based systems were built hierarchically with isioga
complexity. Only one behavior was expressed at any point inasree result of a suppressor
function that restrained other lower behaviors within the hierarchijhe subsumption
architecture was therefore a discrete rule-based processltveed reactions to be triggered by
pre-defined sensory information. Complex robot motions arose from their@ton and
switching among simple behaviors.

Brooks’ idea was against the mainstream definition of artifiaiglligence at that time,
which required robotic decision structures to be organized with a carggereciation of the
surrounding environment. Brooks argued that the standard practicengfsystems-theoretic
methods was preventing the robot from making timely responses and fsmfexibility in
the control scheme. The simplicity and flexibility of thd&eor-based approach proved that it
was capable of performing well in a highly variable environment.

In conclusion, behavior-based robotics methods allow robots to performstasks to
humans by linking given information to a predetermined action. Reatdiparticular sources
of information and then performing a specific task reduces the peeoh funderstanding of the
entire environment. The control structure of behavior-based robatsnplistic and can be
manipulated for practical applications. The focus of the next sdgaofethe project was to
generate working examples of existing behavior-based archasctor robots performing

underwater mine countermeasures.
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3. Motor Schema

Motor schema theory states that individual behaviors that a@sponse to different
sensory inputs can be combined to give a resultant control vectandbogborates all of the
simple behaviors. If the sensor-motor reactions can be written as siehgdéywcontrol vectors,
this can be accomplished by a vector sum. The most common appooadotor schema

implementations is the use of Artificial Potential Fields.

3.1. Artificial Potential Fields Theory

Artificial Potential Fields (APFs) arose in the early sl@f robot motion planning as a
simple, computationally efficient planning routine. APF methodssimplified version of laws
of nature, attractive and repulsive potential, to draw or repel antdtsjeaobot) from one point
to another> In motor schema, an attractive or repulsive potential constitutezhavior that
arises as a result of a sensory stimulus. A wide variebeb&vior commands can be derived,
such as Avoid_Obstacle, Move_to_Light and Random_Search.

APF theory uses the positions of two points of interest to cédcuddractive and
repulsive vectors. The potentials are based on the vector connéetitwgptpoints of interest (in
2D for purposes of this work). The nature of the resulting potewilh depend on the
underlying behavior. The expressions for attractive potentials goalsiee potentials are
slightly different since their desired reaction to a stimulus is inhgrdiftérent.

Consider the example of an attractive potential for a robot movingrdswhe calculated
centroid of a swarm (hence, an Aggregation behavior). The gradient gbtéstial field is
determined by finding the difference between the position ofdbetrand that of the centroid.

The angle between the two points is found by using the inversentangke world coordinate
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frame. Lastly, the attractive vector in the x direction is foupaniltiplying the magnitude of
the original vector by the cosine of the angle found, whilevéator in the y direction is found
the same way, with the only difference being multiplication witeine. Example MATLAB

code for developing the attractive vector is given below, whéreY§ is the center of the group

of robots and [ROBOT(i,1), ROBOT(i,2)] are the {) position of a robot of interest.

Mag_change=norm ([Xc-ROBOT (i, 1), Yc-ROBOT (i,)29 finding the magnitude
theta_att=atan2 (Yc-ROBOT (i, 2), Xc-ROBOT (i, 2phangle between two points

att (i, 1)=Mag_change*cos (theta_att); % findttractive potential
att (i, 2)=Mag_change*sin (theta_att); % findhjtractive potential

attctrl (i,:)= Katt* att (i,:); % attractivepotential towards each other, Katt is the vectoinga

The effect of this attractive potential draws the robot towdnéscentroid. An interesting
observation is that the attractive potential results in rapid modvards the destination if the
distance is large but decreases gradually as the robot apmadhenhdéinal position, finally
stopping at the target.

The repulsive potential, on the other hand, does the complete oppositeindhe f
calculation of the repulsive potential is highlighted by the mutigpion of the x and y
components of the vector with a (1/distance) factor. This faceates the opposite behavior of
that of the attractive behavior. As the robot moves towards an @gsache object in the
environment or even another robot), the magnitude of the distanceebethwe two points
becomes smaller, approaching zero. As a result, the repulsive abjemtps to infinity when
the robot is close to the object. This infinite repulsive vectoraguees that there can be no
collision unless some other vector also increases unboundedly. Thaigoihmon in motor
schema systems to generate potentials that are all upper-bounidedensole exception of the

obstacle avoidance routine.
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The code below demonstrates the computation of the repulsive vector. The

[ROBOT(i,1), ROBOT(i,2)] are the (x, y) position of a robot oen@st, [OBSTACLES(position,
1), OBSTACLES(position, 2)] are the position of the obstaclesMagl L is the magnitude of
the distance from the robot to the obstacles. The radius of theacimos$taclerl, will be

required for finding the exact distance between the robot and theclebstathat it mimics the
maximum distance from the robot to the external radius of the ¢ is the radius of the
obstacle plus the sensing radius of the robot to the external ddius robot. The calculation
with the radius and angles accounts for the distances betweeanbibteand the edge of the
obstacle Repobstepresents the repulsive vector, which gives the resultant moti@nefajing

a strong repulsive vector away from the edge of the obstacle as the robothepita

Repobst ;costheta_obst) —;sin(theta_obsl)
Mag L Rho-rl

theta_obst=atan2 (ROBOT(i, 2)-OBSTACLE(position RRPBOT(i, 1)-OBSTACLE(position, 1));
% angle of repulsion form obstacle

Xdist=(ROBOT (i, 1)-OBSTACLE (position, 1)-rI*cdbéta_obst));
Ydist=(ROBOT (i, 2)-OBSTACLE (position, 2)-rI*sth¢ta_obst));

% Vector to show length of repulsion vector to ablst

Mag_L=norm ([Xdist; Ydist]); %normalize vector faragnitude of length
repobst (i, 1)= ((1/Mag_L)*cos (theta_obst))-((Xi-rl))*cos (theta_obst));
repobst (i, 2)= ((1/Mag_L)*sin (theta_obst))-((1t-rl))*sin (theta_obst));

The example shows that thieeta_obstand the magnitudéflag L is computed similarly to that
of the attractive potential but the repulsive vector differs in thiad/ L

Figure 1 shows how the attractive and repulsive vectors arensdnto produce a
resultant vector that directs the path of the robot. As the robot nmwesds the endpoint, the
attractive vector becomes shorter, representative of the degeasue. The value of the
repulsive vector steadily increases as the robot gets close tddtacle, and pushes the robot

away from it, preventing a collision.
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a-attractive potential
r-repulsive potential
f-fnal resultant potential

Figure 1: Conceptual diagram of motion of a robotmfluenced by Artificial Potential Fields

3.2. Motor Schema Controllers for UMCM
The potential fields methods described above are used in a behavibrduageol

method called ‘motor schema’. The motor schema architectuh®vensin Figure 2. The first
characteristic of motor schema is similar to most other behédsed approaches: it is
dependent on the environment to provide stimulus to the system te sogaé reaction. The
next characteristic is the presence of numerous environmemsbrsedesigned to pick up
specific changes in the environment so that the appropriate respamdee triggered. The
information picked up by the environmental sensors is transfeordédet perception schema,
which triggers the specific response programmed. A number oé theception schemas
derived from different sensors play a part in creating an dwamalposite motor schema to tell

the robot how to move. Several motor schemas contribute to cresitggla summation
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behavior. Figure 3 illustrates how the specific behaviors can be sitengenerate a resultant

motion in accordance to the motor schema structure.
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Figure 2: Motor schema diagrant®
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Motion

Motor Schema diagram demonsirating sum of group behaviors

Figure 3: Motor schema architecture for mine huntirg
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3.2.1 Motivation for Using Motor Schema in Robotics in General

There are several reasons why motor schemas are cradteg@ied in behavior-based
architectures. First of all, motor schemas essentially domdissimple systems that are
fundamentally easy to execute and debug, which is helpful for gememttobust system of
control. This is achieved by using simple individual behaviors adtiiding blocks of a
complex system. Complexity can thus be built from the summatitimesé simple behaviors.
Additionally, a system using motor schema is very capable of working géhctn an unknown
dynamic environment. By having the environmental sensors tuned omligkoup specific
information, other uncertainties and contributing errors are removedheFuore, this allows
relevant information to be used only at a specific point in timee the environmental sensors
have been fired. Lastly, the lack of complex, pre-determined plastingture simplifies the
system. A motor schema system makes use of pre-deterrdirexd relationships between
sensors and receptors, and allows the system to run freely. efdieerthe system is

indeterministic in nature and results are an expression of the behaviors due to threesir

3.2.2 Previous and Current Work
Dr Ronald Arkin of the Georgia Institute of Technology has done wifoste current
work on applying APF to the motor schema behavior-based architeklisr&@ook, Behavior-

Based Roboticshas become a popular text with college professors who arhirtgaabout

behavior-based robotics. His book grew from his 1988 paper on AuttifRotential Fields
theory, and his belief in the lack of a suitable text that addressetheories and applications of
behavior-based artificial intelligence. Much additional reseahas stemmed from his

discoveries!”!8
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3.2.3 Application of Motor Schema to UMCM

The motor schema approach is extremely well suited for mine nigunsince the
undersea environment is relatively unknown and filled with numerous aimtey$. Hence,
engineers using motor schema in creating robots with behavior-b@b#@aures may be more
successful in such dynamic environments. Furthermore, implemeniatieal life robots will
be relatively straightforward. The sensors used on a typiotdtgpe would be situated around
the robot to increase sensory detection in the environment asbibeconducts a search in a
delineated area. Furthermore, motor schema, when programmethdiviolual robots, can
easily provide the basic instructions for moving and finding mines.selpeogrammed basic
functions, combined with functions that prevent collisions, will give ti®r some autonomy.
This form of control is classified as decentralized control stheerobot does not take orders

from a central robot or receive information updates from a mother robot.

3.2.4 Motor Schema UMCM Implementation

Several assumptions and operations are discussed before the exiadrnesults are
explained. The simulated robots are assumed twlemomic Holonomic robots are those that
can move in all directions freely regardless of pose, which is listreadue to physical
limitations (think of parallel parking). However, in the simulatidmslonomic robots prove to
be extremely useful to demonstrate the effects of differenawers without worrying about
robot morphology and kinematics. Some holonomic systems do exist, réeid cgathematical
tricks can be employed to make non-holonomic systems appear holdfiomic.

The robots are all assumed to be velocity controlled. That ibgthevior architecture is

designed to provide a desired velocity for the robots, based on sensor pittobots are
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assumed at this point to be able to follow the commanded velocitylyexdan more advanced
simulations, environmental stimuli such as drift currents can lheded to make the situations
more realistic. Although acceleration-based controllers anerglly preferred to the velocity
based form that was employed in this project, the respective adiond do not differ
significantly for a well-designed controllét. Therefore the velocity-based simulations
sufficiently represented the objectives of the project. Exprgdbie controller in acceleration
terms is a viable objective for future work.

The initial simulations presented did not include drift or other enmental effects. It
was assumed that the robots had full control of their sensordainthése sensors were able to
detect their target stimulus in the water perfectly, althouigin Mmited range. Furthermore, the
robots were assumed to be fully communicative between each otheatimglia decentralized

control.

3.2.4.1 Attractive and Repulsive Vectors

Code was developed in MATLAB (see Appendix A) to simulatengple attractive-
repulsive combination for a single robot. The attractive behaxasr'‘Begin_Search,” while the
repulsive was ‘Avoid_Obstacle.” This set of basic functions formedasis for all future APF-
based techniques. The basic concepts are illustrated in Figuh#leta sample run is shown in
Figure 4.

The objective of the sample run shown in Figure 4 was to demorisieagdfects of the
repulsive and attractive vector acting on a holonomic robot. Thesiptats a holonomic robot

starting at point (0,0) and moving towards (3,5) as a result of tifaetate vector. As expected
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from the definition of ‘Begin_Search,’ the robot initially moved ahhspeeds and slowed down
when it neared the final point. The target point was reached with no collision.

The deviation of the robot from a straight-line path was a resutie repulsive vector
created by ‘Avoid_Obstacle’ as the robot neared the object. Thehabld sensing radius of
0.3 units that kept it away from the object. This result stemmeed the calculation of the
repulsion factor where it was multiplied by inverse of the ntageiof the distance between the
robot and the obstacle, 1/Mag_L. As the robot approached the obstholge eepulsive vector
in the opposite direction was created. Moreover, summed with tilaetae vector, the robot

moved towards the final point even as it repelled away from the object.

Plot of robots moving and avoiding obstacles

y-coodinates

x-coodinates

Figure 4: Simulation of a robot avoiding an obsta@ combining '‘Begin_Search' and Avoid_Obstacle'
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3.2.4.2 Attractive and Repulsive Vectors between Robots

The next step in developing a motor-schema based swarm contsalterto build
behaviors for some interaction between cooperating robots. A sionulaas written (see
Appendix B) that included three robots, each using an attractive éWw&rd the center of the
three combined with a repulsive APF from nearby robots.

The sample run shown in Figure 5 demonstrates how this simplbetnavior motor
schema resulted in three robots staying within a certain disteoroeeach other in an emergent
formation (a triangle, in this case) without collision. Itrigbrtant to note that, since the robots
were not specified in a fixed formation, they move around the ctdculeenter of mass,
repositioning themselves at the optimum location, where the at&aotd repulsive vectors are
maximized. This behavior was labeled as ‘Aggregation_Separatioh¢@sbines an attractive
potential to the center of mass with inter-robot repulsive poteniifle repulsive and attractive
vectors are each controlled by a respective gain, which deterriaespread of the robot
positions around the center of mass. The behaviors demonstrated wesenikar to the first
sample run since the repulsive and attractive vectors wéiredtio move the robots to a pre-
determined point in space, but now multiple robots are cooperating.

Several major observations arose from this simulation. Priarapng these is that the
robots were kept in a simple formation around the centroid. The treesrkept their distance
from the centroid at an equal distance, which created a triarfgutaation. If there were four
robots, the mean formation was a square. As the numbers increased, the meamftents to
be concentric, with no specific structure. It was concluded thatdbets generated the
attractive and repulsive vectors correctly, and that this behasitd be combined with the first

sample run shown in Figure 4.
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3 Robots moving towards centroid whils repulsing away from each other

— i

Y coordinate

Center of Swarm

Figure 5: Plot of 3 robots performing 'Aggregation_Separation.' Initial positions are marked with an ‘O".

3.2.4.3 A Robot Swarm Moving Towards an Endpoint

The objective of this next sample run was to combine the two cdensrglenerated in
earlier programs. The new controller was designed to meveaem to a target centroid while
maintaining each robot’s position with respect to the others ugdingctave and repulsive
potentials. The constituent motor schema of this sample run includestiiema to force the
robots towards an endpoint (‘Begin_Search’), to cause the robots to avolzstacle while in
motion, (‘Avoid_Obstacle’), and to keep a particular distance away from therotiws without
collision, (‘Aggregation_Separation’). The results of the simoitaitan be seen in Figure 6.
This run demonstrated the process of building complexity using esibgilaviors. Code can be
found in Appendix C.

This particular combination of different behaviors lacked a stredtuapproach to
organize the priority of the behaviors. The resultant behavior wasl s the sum of the

different behaviors, so it did not differentiate the order in whiehldehaviors were determined
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in the individual decision process of the robot. Moreover, each robot$etsieng radius of 0.3
units, which represented a sensory buffer that would prevent thes fotwat getting too close to
an obstacle or another robot. If a robot detected any obstasids this buffer zone, it would

create the repulsive vector and repel away from it.

3 robots moving and avoiding obstacle
25

y-coodinates

¥-coodinates

Figure 6: Plot of 3 robots avoiding an obstacle

The plot in Figure 7, from the same sample run, shows the path rofibts with respect
to time for this simulation. From the three-variable plot, anresean easily determine if the
robots were moving and colliding at any given time. If twdhpaif motion of the robots cross,
it means that the robots collided. Since the speed of the robotaowdisnited, the swarm
moved rapidly towards the endpoint, completing the motion in less thactobdse The speeds

reached in this case were not representative of the speeds that could be reprodatad in w



29

individual tracks taken by each robaot

--=- Track of 1st rabot
— Track of 2nd robot
5 —— Track of 3rd rabot

y-coodinates

®-coodinates time-coodinates

Figure 7: Plot of individual robot tracks without normalized (limited) speeds.

The following two plots, (Figures 8 and 9), show the same struanaebehavior, but
with speed limited to 1 unit/sec. The reduction of the magnitudsgeasfic real life application
to make the speeds executable on real rdbofBhe robots took 44 seconds to reach the final
point. This approach allowed the user to change the gain to a suithldetossimulate the

speed of an AUV or UUV moving through the water.

3 robots moving and avoiding ohstacle
=8 ! ! ! !

y-coodinates

x¥-coodinates

Figure 8: 3 swarming robots avoiding an obstacle wh normalized tracks.
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individual tracks taken by each robot using normalized vectors

--=- Track of 15t robot
Track of 2nd robot
—— Track of 3rd robot

y-coodinates

x-coodinates

time-coodinates

Figure 9: Individual robot tracks with normalized (limited) speed.

3.2.4.4 Sample Run with Multiple Obstacles and Multiple Robots

The next simulation was developed to demonstrate the capabilitiise ofiesigned
controller in more complex environments and with a larger numbesbaits. This simulation
included numerous obstacles that were made up of multiple ciraibanbstacles. From the
sample run in Figure 10, it was observed that the robots wereocabl®id the obstacles while
moving towards the final point. The plot shows that the attractider@pulsive vectors worked
effectively together to generate the desired motion towards the endpoint.

Note that, as the number of robots increases (six in this casdprimation of the robots
becomes less apparent. This could be attributed to the changampuositions, as the robots
were moving; hence the robots were not able to form a consisiapé saround the center of
mass due to broad path changes resulting from obstacle avoidance. Tdfermlatdual tracks
in Figure 11 shows that the robots were moving towards the endpoint without collitingaeh

other. Code for these simulations can be found in Appendix D.
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A problem encountered during this particular run was the creationutiiple ‘meta’-
obstacles using smaller, circular obstacles. There were oméircehapes that could be created
due to the limitation of adding individual obstacle points. The benefiti®fapproach was that
computation of the nearest obstacle point was straightforward.ewowas these shapes were
not realistic, this problem was addressed in later simulationsrégting a more complex
obstacle field.

Multiple robots moving and avoiding obstacle

y-coodinates

0 5 10 15 20 25 30 35 40 45

x-coodinates

Figure 10: Multiple robots avoiding multiple obstades

individual tracks taken by each robot

---- Track of 1st robot
—*  Track of 2nd robot
—&- Track of 3rd robot

Track of 4th robot
i L et i i T, —— Track of th robot
i PO | ; LA P Track of Bith robot
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¥-coodinates 0 o
time-coodinates

Figure 11: Individual robot tracks avoiding multipl e obstacles.
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3.2.4.5 Sample Run with Polygonal Obstacles

The next sample run was generated using more sophisticated ebstzatling, with
shapes more representative of the objects the robots might encourter real undersea
environment. As seen in Figure 12 below, the shapes of the objemtsbted those of ships.
An assumption made was that the robots would not be searching adgptias but would
mainly focus on littoral areas where the mines are moreylikebe placed. Hence, in shallow
waters, the robots need to account for the hulls of the ships for obstacle avoidance.

Furthermore, with the generated change in obstacles, a new prémgrameating the
repulsive vector was modified and recreated from an existingrgrd> The repulsive vector
function was called to determine the closest obstacle point femin bot and to generate a
repulsive vector away from the particular edge of the object. Hrerresults of the runs, it was
seen that the programs work fairly well. The plot of the imtdial tracks showed no signs of
collision in Figure 13 and demonstrated the effectiveness of the ¢entrobbstacle avoidance.

Code for the new obstacle avoidance routine can be found in Appendix E.

3 robots moving and avoiding new obstacle

y-coodinates

Figure 12: Plot of motor schema with new obstacles.
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individual tracks taken by each robot in new obstacle

--- Track of 1st robot
Track of 2nd robat
Track of 3rd robot

y-coodinates

time-coodinates

¥-coodinates

Figure 13: Individual tracks of the robots avoidingnew obstacles.

3.2.4.6 Additional Improvements to Motor Schema UMCM

One major limitation of motor schema can be seen in the siowlsiiown in Figure 14,
where the robots collide with an obstacle. The results come from a phenomenohrtbanisas
local minima.?*?* A robot using APF methods experiences local minima when thetaterand
repulsive vectors exactly cancel at some point. This occurrée isimulation when the desired
attractive potential was exactly perpendicular to an obseaiie. One method to remedy this
problem is to add a random motion behavior, ‘Noise’, so as to incieashances of the robot
moving out of the constrained region as shown in Figure 15. The new a&chem
‘Random_Search’ involves a simple additive random velocity held ogenadl sample period,
and proves effective for small regions of attraction to locatimm. More sophisticated

methods, involving recorded time histories, are sometimes used in complex problems.
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3 rabots moving and aveiding new obstacle

Figure 14: Local minima of robots with associated allision.

3 robiote moving and avoiding new obetacle
20
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*-Cool dinates

Figure 15: System with added 'Random_search' behami.

3.2.4.7 Robot Swarms Conducting Underwater Mine Countermeasures

The next simulation that was conducted combined some of the deseet$ ¢ffat have
been discussed in the runs mentioned previously. Specifically, thidason combined
‘Begin_Search’ with ‘Avoid_Obstacle,” ‘Aggregate_Separate’ and ‘Randgsarch.” The
resultant attractive vector pointed towards a weighted combinafidhe final point and the

center of mass while that of the repulsive vector pointed away tlienother robots as well as
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the obstacles, with some random additive values. The obstaclegdcteaesembled ships,
were laid out to loosely represent ships steaming in a narreictstof water in an enclosed
channel. The robots were also able to repel away from those limits. Fuothethe robots also
tagged the mines as they came close to them, while performing the new behewidr Mines’.
‘Avoid_Mines’ is effectively identical to ‘Avoid_Obstacle’ witthe exception of the additional
tagging action. These basic simulations served the purpose fgingthe effectiveness of the
program by allowing a qualitative analysis of the performance of thersyst

From the results, shown in Figure 16 on the next page, it was obdbateithe initial
positions of the robots formed a straight line. When the robots begaovttoward the final
position initiated by ‘Begin_Search,” individual robots moved to thegpeetive relative
positions through the action of the behavioral vector component ‘Aggregatiomats@pa The
second behavior allowed the robots to position themselves at a reasttabion from the
mean position of the respective robots. As the robots moved towarth&heosition, the
distance from between each robot was gradually reduced. ‘Avoid_Obsteadealso at work,
evident from the obstacle avoidance around an object. The ‘Avoid_Minevibelaiowed the
robots to avoid the obstacles at the same time tagging the posifiting mines. MATLAB
code can be found in Appendix F.

The swarm motion patterns discussed thus far \wdréoc. The Parallel Search And
Rescue (SAR) pattern shown in Figure 17 was modeled after pattypted by the U.S. Coast
Guard for finding downed pilots or missing personnel at&eghe axis of search is parallel to
the major axis. It is a useful pattern to use when the se¢arght has the possibility of being
anywhere along the major axis. Furthermore, fixed wing asss this pattern to cover a large

area in a short time. The objective of underwater mine cleatay AUVs and UUVs involves
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clearing a path for ships to pass through. This pattern satis@eobjective by clearing a path or

channel quickly while finding all mines and obstacles in the way.

3 robots moving and avoiding obstacles and mines

y-coodinates

0 z 4 6 8 10 12 14 16 18 20
x-coodinates

Figure 16: Robot swarm conducting UMCM

A west to east track search
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Start 4
search

-

Track space

Figure 17: Parallel SAR search pattern

Figure 18 shows the robot swarm executing a search scheme to mark afieeemtihe
sample minefield. The robots follow specific waypoints that delineate a ps#fah
mimicking the Parallel SAR pattern. The swarm exhibited good swarm manepuaéilitis,

avoiding obstacles and mines. However, the robots were not able to knowingly perform tasks
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according to changes in the environment. The resultant behaviors expresseénezated by a
vector sum of numerous behaviors, but the robots had no decision-making capability. Every

behavior was considered equally important at all times.

3 robots demonstrating motor schema

y-coodinates

1] 2 4 B 8 10 12 14 16 18 20
x-coodinates

Figure 18: Robot swarm performing UMCM with motor schema

3.3 Conclusions Drawn from Motor Schema

Some advantages of the motor schema were observed from theheseatucted. First,
the behaviors are executed in real time, and this capabilitysatltoewrobot to generate behaviors
in accordance to specific stimulus in the environment at a panrtipoint in time without a full
knowledge of the environment. Second, the potential fields cause the tolmttomatically
decelerate as they approach a target point, or accelerayeframwvaan obstacle, which reduces
the dependence on velocity compensation in real life. Third, the ashiemeach individual
behavior are very modular in nature. Throughout the process of developosagitheutting and
splicing individual sequences of behaviors was very straightforw@his makes development
and addition of future behaviors a rather easy task. Lastlywibiith noting that the control is

still decentralized. Under this control, the robots behave autonomously asailable
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information to make the right decisions. It is important to note, haw#wa the scope of this
research did not deal with how each robot determined the location otlebstthe actual
centroid, or its own position using available sensors.

Several disadvantages of a pure motor schema structuralserebserved. The lack of
a clear decision structure made the system truly react®iacing different behaviors in a
hierarchical order would improve the functionality as well as alt®stain behaviors to be
triggered only under specific circumstances.

This phase of the project resulted in several major accdmpdists with regards to the
motor schema approaches shown in this section. While the motor sselnehitecture is well
known, no specific methods have been described to generate behaviararthz¢ matched
precisely to such a desired objective. That is, there is no knowsedsform design
methodology. Nonetheless, the groundwork done to generate appropriateotselfi@vithe
UMCM problem demonstrated that motor schema were viable for UMM representative of
certain desirable traits of a mine-hunting robot. The behaviors evested using Atrtificial
Potential Fields since manipulating differential equations couleérgée the different behaviors.
The reduction of behaviors into differential equations made it podsiblerrther development

and addition into other viable structures, which will be discussed in later sections.
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4. The Subsumption Architecture

Another form of behavior-based controls, the subsumption architectuseglseaastudied
for this research project. The strengths of subsumption artthigemake up for the weaknesses
present in the motor schema control. It creates a decisiardtigr whereby a robot is able to
make decisions based on the information currently present. Howavgsumption is also
similar to other behavior-based controllers in that its structure is exyreeasltive in nature.

Motor schema, as discussed in Section 3, has no decision hierarchly.bebawior is a
component of a composite behavior. The only structure motor schemasgassss the
summation of different potential fields contributing to the resultante on a robot. In a
subsumption approach, only one behavior is active at any given fiinere are no ‘expected’
behaviors in a subsumption system, since the robots are made t@imaxaeime and the robot
has to figure out what to do next, based on the current informétion.

A possible application of subsumption includes multi-agent controls, wineh (in
part) investigated in this research. The significant chematit employed for that purpose was
the decentralized nature of the robot control. Some have arguesl/#imain service industries,
smaller modular robotic systems have clear advantages owdérotral sophisticated ones in
terms of costs and susceptibility to damage or s30 interconnect and relate information
between these robots is to use artificial intelligence strestsuch as subsumption. Several of
the direct comparisons between a conventional Al and behavior-bas&ahgption control can
be found in the paper written by Dr V@yke Parunak’® He addresses the problems of
conventional Al methods, including slow response, need for a centrgutiogn body, fragile

responses to change, and difficulty in reconfiguration. The behbaged approach, however,
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represents what happens in reality: fast response due to galt@atun time, robust response
to changes, and no need for a central computing agent.

The subsumption architecture builds complexity based on simple behawim$oimn of
decision structure overcomes traditional Al problems of integratingerous sensors and
having to respond to multiple task goals. Such Al systems giwgfispastruction to actuators
to respond to the perceived sensory information. An advantage of the subsumption method is not
overwhelming the system by taxing the computer performingdh®uatations, but by directing
specific reactions for different sensory information.

Another highlight of the subsumption architecture is the use of avioelmaerarchy that
coordinates decisior’S. Two methods of coordination are inhibition and suppression. Inhibition
is the prevention of the transmission of a signal, while suppressitre prevention of the
transmission of a signal and, at the same time, replacememitadignal with the suppressing
signal’s information. Figure 19 shows a simple subsumption struttaténas been created for

the specific purpose of autonomous robots performing UMCM.

—_— Avoiding
& Searching
N Gathering
- " Wandering Action

Figure 19: Subsumption architecture of a typical rdoot.
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From Figure 19, the decision structure of a robot is set up suchénatis a hierarchy
that the robot uses to decide which behavior to implement at gey gme. For instance, the
highest priority is to avoid an obstacle, followed by searchinglipects, gathering with other
robots, and finally wandering around. These behaviors are dictatedebgnironmental
stimulus. The circles with a letter, s, represent the suppressechanism at work. If the
sensors for a higher ranked behavior are fired, the suppresspreviéint all behaviors from the
lower ranks from being expressed. This allows the current beltavberthe only one expressed
at that point in time. Once those sensors stop detecting thdistjrthe robot reverts back to the
next lower behavior whose sensors pick up the next most importandisti Again, the result
of the subsumption architecture allows only one behavior to be exprassetime; all other

lower behaviors are masked.

4.1 Previous Work

Rodney Brooks from Massachusetts Institute of Technology (MIg)nadly developed
the subsumption architecture. He proposed that different laydrshafviors could be set in a
hierarchy based on rules for performing specific tasks. Tdr® fof decision structure was
inspired by biology, as he realized that the actions of a robotl tiukseparated and artificial
intelligence could emerge to build complex interactions with the environment. Seyeosaant
aspects that Dr Brooks focused on were the facts that the robots did not need dmuotéghas
was common in conventional methods, since the new architecture wagsoatdkal with
imperfections from the physical world and did not rely on predictingxgecting information

that might not be available or easily modeléd.
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4.2 Relevance of Subsumption to UMCM

The study of the subsumption architecture was critical in gengra controller that can
be easily embedded into hardware controls, because of the presanggidfdecision structure.
However, as the architecture does not specify how to generate indibdbaviors, the
development of subsumption controls relied in the initial stages on ¢jened suitable
behaviors using a basis of APFs and motor schema (see Sectionv&®). thBugh the basic
building blocks are motor schema, the subsumption structure proved mobdefland robust as
a controller (due to the decision capabilities). Furthermore,eddibg the motor schema
behaviors into the subsumption architecture created a more sopbdtiedtavior-based system
that duplicated the best characteristics of motor schema (whgrooelbehavior was active)
while adding new capabilities. Finally, the controller stlied on behaviors that could be
modeled with differential equations, which was an important chaistatethat was desired for
purposes of further hybridization, as will be discussed in Section 6.

The types of controls dramatically change from continuous in m&tbema to a
switched controller in subsumption. Nevertheless, the robots weretalgenerate highly
reactive behaviors and performances that were not possible withese forms of control.
Therefore the robots were able to perform their tasks in aan@egd manner yet with total
unpredictability. These mine hunting robots are meant to be autonomous, thengecision
structures were designed to be self-governing to allow the robegsréign based on the

environmental factors at that present moment.
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4.3 Subsumption Architecture for UMCM

Figure 20 shows the developed UMCM subsumption structure, which tsonsishe
various behaviors as created from the programs in motor schema, ‘Avoies,Mi
‘Avoid_Obstacles,” and ‘Aggregation_Separation’ as well as the ‘Ban&earch’ behavior
(used in a different context here). As shown above, behaviors weratea if the individual

distance calculated exceeded the requirements, suppressing lower behaviors.

If mine_dist= 0.3, ——————® Avoid Mines
Avoid mines

If ohstacle dist<0 & ¥ Awvoid Obstacles

Aggregation & Separation

=Ifrobot_dist<0.5, spread
=Ifrobot dist<2 or » 1 aggregate

— * Eandom zearch paths

Resultant
Action

[frobot_dist=0.5, <1.0random motion
along path

Suppressor can be 1ffelse or case staternents to call the function when
a specific sensory information is triggered.

Sensing loop will be continous running in the set time domain.

Figure 20: Subsumption architecture of a mine-hunitig robot.

Pseudocode below shows the basic algorithmic flow of the subsumption architecture.
For (number of robots)
(1 robot at a time)
If (distance of mine < d_Mine) %Avoid_mine
e Tag closest mine
e Repulse away from the mine
Else
If (dist to obstacles < d_Obst)
e Repel from obstacles
Else
If (distance to robots> d_x) %Avoid_Obstacles
* Do nothing
Elseif (distance to robots>d_y & distance to robots x) % Aggregation
» Find centroid of robots
» Attractive vector towards common center
Elseif (distance to robots<d_y & distance to robo@®
« Repel away from other robots
Else %Random Search
e Random search for mine
e Follow pre-plotted waypoints
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From this pseudocode, the MATLAB simulation code was developed. Itsusgte if-
else statements to act as suppressive agents to create thechlgieof the behaviors.
Furthermore, the presence of limits to activate certain bets|awas an accurate way to
represent the information being detected by sensors. If the dévbe sensory information
exceeded that of the threshold value, the behavior would fire, atrtiestsae suppressing all
other behaviors. The various codes that expressed behaviors used arfosimilar to those
from the motor schema discussion (Section 3). MATLAB code can be found in Appendix F.

Several problems were encountered in coding the subsumption struchedirst was
finding a suitable suppressor element. After much contemplation;edseifstatement was the
simplest, most direct manner in which the suppressor could be iemied) in code.
Furthermore, it proved a difficult task to combine various linesodes from different behaviors
and link them to produce a combined, autonomous effect in an organized strudwever,
the use of velocity-based control vectors helped facilitate thecapph of the motor schema
behaviors to the creation of the subsumption architecture.

In fact, it is worth mentioning at this point that traditional behabmsed systems do not
lend themselves to simulation. Primary difficulties include #et fhat most such architectures
do not involve equations of motion, but simply connect sensors to motoriamdhe behavior
to ‘emerge.” As such, it was necessary to develop velocityaltars based on APFs and motor
schema methods as a first step to building a subsumption architeturese methods can be
written to provide direct motion commands. Even so, simulation of swlitspgems, such as

subsumption-based methods, was nontrivial and required some care. A= siden in the
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following section, it is this careful, systematic simulation dgwment that led to the major

breakthrough of this work.

4.3.1 Subsumption Simulations

The subsumption code for running a swarm of robots was modeledhafteseudocode
from the previous section (see Appendix G). In the background, at punmsie the robots
appear to change direction, lie the waypoints. The generation ofwaygoints allowed the
user to generate a certain pattern of search for the mimegs thei robots (see Section 3.2.4.8).
As the robots approached the waypoints, the reduction in distanceshdtveeindividual robots
and the waypoint was calculated and compared to a set limihe Histance was less than the
given limit, then the waypoint was switched to the next one, allowhegrobots to change
waypoints as they moved along the designated path.

The results of the simulation are given in Figure 21. As ¢hets moved along the
intended path, they tagged the mines (originally marked with +) wdlaraond to indicate that
the position of the mine had been located (sensing radius for miriedalvas 1 unit). Ideally,
this information would be reported to a central unit to assess that thir mines. The plot in

Figure 22 shows that the robots did not collide during the run.
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In these simulations, mine avoidance was of utmost priority, sinadbat could be
destroyed if it ventured too close to a suspected mine. This bemasoadopted from motor
schema behavior, ‘Avoid_Mines.” To limit the types of behaviors esga@ when the robots
moved close to the mines, different sizes of sensing circles eveated. A circle of radius 0.3
units around each mine simulated the region of sensitivity of the radbotise mines. A
significant characteristic of this behavior was embedded hgserdf the robot was inside the
inner radius, ‘Avoid_Mines’ was triggered. That behavior remainedeaatitil the robot moved
outside a larger, outer radius of 0.5 units. The zigzag and jagged reseemsen Figure 21
exemplifies hysteresis. Once the robot moved out of outer dihgeobot would activate the
next higher behavior and continue with its movement.

The second most important behavior was to make the robots avoid theleshstéis
was achieved by adopting the behavior, ‘Avoid_Obstacle.” The robots $epheation distance
of 0.8 units to allow the robots to clear the obstadlé& observations from the code showed
that some randomization was important because it prevented theeoceuaf local minima of
the potential fields theory found when a robot moved around an obstaclen sByehe
randomization was limited because the robot had to follow certaipoiratg and their individual
paths were generally moving towards the endpoints. Since only oneidrelvas expressed at
any one time, random motion for avoiding local minima was taken imsideration within
each individual behavior. Therefore, the robots were able to genanalienm motion under the
‘Random_Motion’ behavior as well as the ‘Avoid_Obstacle’ and ‘Avoid_Mbeiaviors. This
was easily accomplished due to the underlying motor schema structure.

The third significant behavior was the need to aggregate towestheon center while

avoiding each other robot. This behavior was adopted from the motor achem
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‘Aggregate_Separate.” When the distance between robots was béti@énunits, the robots
were too far away from each other. Hence the robots would a&jgresy move towards each
other to reduce the separation. If the separation was gteater3 units, the behavior was
disregarded. This allowed the robots to peel off from the main grdufe \werforming
‘Avoid_Obstacle’. Thus, if a robot moved in the opposite direction fronrébeof the swarm
around an obstacle, then the robot would be allowed to move randomly amamperf
‘Random_Search’ in a new area. Furthermore, this behavior alldwedbots to have some
freedom to move around an obstacle individually without having to sacthie mobility of the
swarm to avoid the obstacle.

The aggregation behavior was supplemented with a separation compoifetite
distance between a given robot and its nearest neighbor wakades0.5 units, the robots would
repel from each other to increase the separation distance.

Due to the limits on triggering of the ‘Aggregate_Separate’ behawdy when specific
values of the separation distance were met would the behavioigdered. As expected, this
resulted in inconsistent group aggregate shapes and formations.

The last behavior was ‘Random_Search.’ This behavior occurred wéeolbibt was not
performing any of the other behaviors. The robot would move, in genevayds a pre-
assigned waypoint. As it approached the waypoint, the movement wgeadted with a lot of
noise, to enable the robot to move in a more random manner. Whestdredito the current
waypoint became less than 0.1 units, the next waypoint was ini@stédhe robot swarm

proceeded to the next waypoint.
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4.4 Conclusions Drawn from Subsumption Architectures

Several conclusions can be drawn about the performance of the subswargititecture.
The subsumption architecture is a reactive system that allevedividual robots to behave
autonomously, using their own decision structure to pick the correct behavisuit their
movement and the environment at a particular time. Furthermoreultisersption approach
may reduce the computational strain on a microprocessor as teofethal lack of computational
complexity rising from a single point behavior at every instandene. The suppressor agent,
in this case, the if-else statement, prevents any lowervioeHaom interacting or interfering
with the behaviors higher up in the hierarchy. Such controllersagsete implement in actual
hardware, since there is a specific structure that the robdiase its action on instead of relying
on a diffused schema, where multiple behaviors are added togethea Viiope for the best’
attitude. The subsumption architecture implicitly createsfiéidl Intelligence (Al), since the
architecture makes decisions based on environmental feedback witimeatd afor planning.
The presence of the suppressor adds to that effect with thedadtgenerates a yes/no response
on different types of input, implicitly avoiding the sensor fusion probfetmerein difficulties
commonly arise when combining data from disparate sensors for a unified eohtroll

Some problems encountered with the subsumption approach included difficulty in finding
a particular structure suitable for UMCM as well as havimgeterminate overall systems
behaviors. There were no set architectures or design methoddlmgresv robots performing
UMCM should be created. The process of creating the architesquered more art than
science, since there was no one mathematical standard to gethatatecision structure.

Hence, it took creative energy to generate a functional architecture.
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The indeterminate systems behavior arose from the fact thedlibts’ responses to the
environment were highly reactive based on the information presenspécific point in time.
This unpredictability could be a disadvantage in real operations, thaceperators would not
have complete understanding or control of the robot swarm. Addl§ipiidhad been seen that
similar architectures used for modeling birds in flight and schoblsh suffer from chaotic
instability that is impossible to predict but simple to achféveAs such, the next facet of the
research was to investigate more systematic swarm conttiobdsethat admit some closed-form

analysis.
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5. Statistical Control

As mentioned, behavior-based and system-theoretic approaches to cuwvdral have
been studied extensivéfy Behavior-based systems are flexible, easy to implement andtdo no
require a complete model or knowledge of the environment. Systemtibemethods are
commonly based on differential equationSuch systems have provable results with well-
understood analysis tools, and are sometimes controllable through thieatappl of
compensators to give results that match desired specificdtiofise next phase of this project
focused on a systems-theoretic controller that was very promisingwarm control. The
controller selected was the so-called ‘statistical comtrollStatistical controllers are designed to
manipulate the individual robots in a swarm to provably and robustly ajenerdesired swarm

profile and yet still allow the units some degree of autonmy.

5.1 Introduction to Statistical Control

Statistical swarm control was investigated to determinauitalslity for UMCM. Under
this systems-theoretic control methodology, swarm-level functisogh( as overall mean
position and variance) can be controlled in a provable manner. Such-Ewvatnfunctions
dictate how a group of robots coordinates individual unit motion as tt@pl&ransitions from
point A to point B.

Statistical control methods, a form of systems-theoretic contnave desirable
characteristics for the UMCM problem. Again, systems-tli@oo®ntrol systems such as this
are typically based on differential equations, which make therhswgéd for simulation and
real implementation.Statistical controls can be run in real time, giving riseaidyf reactive

control by limiting the spread of the robots while at the same &llowing the robots to interact
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and move with some autonomy. Weaknesses of this method include rigidstyucture,
necessity for pre-planning of swarm paths and tasks, and an ovedititability (which is an
advantage for stability but a disadvantage for reactive searchifdje statistical control
architecture is well suited to simulation study, since thennaga variance of the spread of the
positions of the swarm of robots can be observed and calculatedydfreatl the simulation

with ease.

5.2 Applications to UMCM

Statistical methods have the capability to coordinate the motions of each rolsetama
without having to plan their individual paths and motions in advance (wh&chasputationally
complex problem for large swarms). These controllers also aéotain secondary tasks to be
encoded in such a way as to be carried out only when not interfetimghe primary (swarm-
level) tasks. These characteristics are truly benetwislMCM. The robots are free to roam or
move in a designated area while maintaining a particularibdistn limited by restrictions
placed on the swarm. In addition, these controllers admit simpdafrguration of primary and

secondary tasks, which enhances the multi-tasking capability of the robot.swarm

5.3 Previous Work

Professor Bishop from the United States Naval Academy piondbeedheory of
statistical controller. He has since worked with Professtwedit of Virginia Tech. They have
developed a comprehensive statistical controller for swarming robdt$ialba not developed
any task-specific implementations, such as for UMCM. In the few sections, the basics of

this control are discussed, followed by a design for the UMCM problem.
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5.4 Fundamentals of Statistical Control

Statistical methods control swarm-level functions, such as medrnvariance of the
positions of the robots, which in turn restrict the movements of ansvaa a wholé® The
individual task objective of each robot remains unchanged... determimintpc¢ation of the
mines and avoiding obstacles. The swarm, as a collective, estitys some desired function
profile by coordinating the motion of the robots.

This approach involves using a special matrix, known as a Jacobiaralltved the
calculation of the best velocity profile for the robots accordiogtite set limits of the
performance of the swarm. Jacobian matrices are typicpplied in traditional robotics to
relate joint velocity to end-effector (tool) velocity. A Jacobian matrix is defined by the stqte

of the system and some task functi@@). Denoted] (q), the Jacobian igiven by:

EACTEAC)
dq, aq,
1
J(q) = 1)
of ,(q) of.(q)
| 0q, 0dq, |

where the statey is n dimensional, the task functiof(g) is m dimensional, and

f(a)=3(ag.™

In a statistical controllerf(q) represents the swarm task function, which can be any
closed-form, differentiable function of the swarm state, whichymcally given by the
concatenation of the individual units’ positions. In this work, the statewge anr unit swarm
in 2D was taken to bg = [y, X, ... , % V1, ¥ ... , Y]' . An example of a task functidig),

using swarm mean and variance, is givettby
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In this simple example, the mean,(uy) effectively determines the overall swarm position while
the variance ¢ , oyz) dictates the spread of the elements. The Jacobian forskeeator

given by (2) is shown in (3), (4) and {8)
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5.5. Components of the Statistical Controller

The statistical controller as seen in Figure 23 is fundaatgna basic closed-loop
feedback control system. Using standard methods from feedbachkla@idws the system to
reach the desired values of the swarm functiggs at equilibrium. The proportional (gain)
controller brings the swarm to the desifég) while the null space controller (discussed below)

moves the robots in such a way that there are no collisions.
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Thef(qg) that was used in the simulations performed for this part of tleandsincluded

the mean and variance of the swarm inxfamdy direction, as indicated in (2). The task-space

controller and the Jacobian pseudoinverse continually computed the errcorapdnsated the

system so that the swarm followed a preferred path, moving alffiegedi waypoints defined

by the user. The swarm was ordered to move from point to white each robot performed its

mission of searching for mines and avoiding both mines and obstaclels fa€at of the control

will be described in the subsequent section.

5.5.1 Task-Space Control

Task-space control is a common method for systems that rely ohiaa to convert

from one coordinate space to another. A controller is designed sp#ue defined by the task

(here, the mean and variance of the platoon). This control genéeatesd velocities in the task
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space (hergy,, 1, etc.) The Jacobian is then used to convert those desired taskssipadees

to the state space of the system (here, the velocities of each swarm unit).

A proportional controller was used for the task-space component of this sysemsdiéc
is a basic compensator intended to track a desired differentiajdetory, and because it was
easy to implement in the system. The controller uses a gaie, | to magnify the error
between the desired and actual swarm state and to compendht fenror. The compensated
system shows improved stability over behavior-based approachemessitres error and forces
the response to the desired equilibrium. This basic gain contsoliesscribed by (6). Figure 24
depicts the controller in a standard closed feedback loop.

C=K* e (k) (6)

. e v : .
f(] 4O—> K o 1/s > f;-

Figure 24: Proportional gain control

In the simulations performed, e(k) was the error calculateddeet the desired and the
actual values of the swarm level functions after every itaradf the control code. K was the
control gain that was used to adjust the transient performandee afontroller. The error
feedback and the feedforward velocity (q) (based on planned swarm trajectories) guaranteed

perfect tracking of the desired swarm profile in the absendestirbances (which are addressed

in section 6.2.1).
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5.5.2 Jacobian Pseudoinverse
The task space controller computes desired velocities for theoplabut the actual

control occurs at the unit level, in state space. The swaterspace velocity] represents the

motion of the swarm at every instant in time. For a largaswof robots, the number of state
variables X andy for each robot) is typically much greater than the number of tasé&bles
(swarm mean position and variance in each dimension, for exampley.rethindancy creates
an infinite number of possible configurations for the swarm wstilé achieving the desired
profile.*> The basic control that achieves this task takes the following form:

g=3"(K(f*(a) - f(a)+ f(a)) (1)

J'=J3"3JN* (8)
where the parenthetical component of (7) is the task-space contantlel’” is the so-called
Moore-Penrose pseudoinversithe Jacobian, which is defined by (1) and (2) for this problem.
The pseudoinverse is used because the Jacobian for a large swavmsquare and thus not
directly invertible. The application of the pseudoinverse of #wekian allows the task-space

controller to be converted to a state-space controller, generatimgnhncotnmands for the units

based on the task-space error.

5.5.3 Null Space Control

Since the proposed solution for the problem of UMCM is to use numeobassrto
maximize capability, the swarm will inherit redundancy qualitie The swarm has more
members than objective functions that need to be met. Therdiere, dre more capabilities
present than would be utilized by the pseudoinverse controller of (7)-(8). Effecthere are an

infinite number of configurations for the units to satisfy the réesitask-space functions.
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Redundancy resolution, taken from redundant manipulator control, is employethrtage
swarm resources and functions by moving the swarm alongethenotion manifoldthe set of
all configurations that match the desigq)) toward a locally desirable configuration. In this
implementation, additional tasks, beyond the coded functiof(g))pfare projected onto the null
space of the Jacobiakg), meaning that those tasks are carried out in such a manitelease
the primary objectives encodedf{g) unchanged.

For a UMCM problem, primary tasks are maintaining the mean ananearwhile the
secondary objectives are to avoid obstacles and mines. A Jacobiapawallprojection term-(
J"J)v basically allows such a swarm to compute appropriate velocities of the fabathieving
secondary objectives given by velocity vecterghile maintaining the primary tasks defined by
f(g). Although this does not make each robot fully autonomous, individual unitseaetyto the
environment in a constrained manner. In simple terms, when one mukgit react to an
environmental stimulus and therefore be deflected from the nominal velonitgead by (7)-(8),
the entire swarm reacts as a whole to guarantee that tharpriaskf(q) is still achieved. In
certain cases, the response of the units is limited by theqyr tasks. On the other hand, the
swarm as a whole acts as an autonomous syétert.is possible to decentralize certain tasks
under this form of control, making the units fully autonomous, althouglligitiction can be
misleading®®

Gradient projection methods are employed to achieve the null spedmlc A
redundancy-resolution controller is shown in (9), whagre J*J) is the projection term. This
projection operator can be thought of as a driver that forces the salamin to coordinate
motion to accommodate secondary objectifesThe secondary objectives are encoded in the

vector v, which is often a gradient of an objective function c(q) givendb§q)/dgq. The
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secondary objectives as encoded iare always state-space velocities, although they may aris

from the gradient of a task vector.

g =3"(K(fy(a) = (@) + fa(@)+ (1 =I"I)v 9

5.5.4 Task Arbiter

Specific secondary tasks for the null-space control are embeddeel fnnctional block
labeledTask Arbiterso that the robots are able to perform some secondary tasks while moving as
a swarm. The design of tHask Arbitey which represents, required that the tasks be written in
differential equation form for interface with the null-space mtigen (which requires velocity
vectors). An important note to make at this point is that the velocity-basenldsey task can be
anything that is in the form of differential equations that descrasks that are also velocity
based.

The only secondary task defined for this controller was obstaoldance. The obstacle
avoidance task was encoded in exactly the same form as the ‘Avotdcf@bsehavior from
Sections 3 and 4, with the exception that the repulsive vectors figr et were concatenated
to formv.

In conclusion, the combination of the different components gave risestatiatical
controller that was capable of regulating swarm-level functiovtsle simultaneously
accomplishing secondary tasks defined as state-space vekrtity.t These secondary tasks

proved to be the key to combining systems-theoretic and behavior-based controllers.



60

5.6 Statistical Simulations

The previous section on the fundamentals of statistical control desttiss theory on
which the swarm controller was based. This section demondinateaplementation of control
characteristics for UMCM.

The robot swarm in these simulations used waypoints to guide its molyenwving in a
specified path designated by the user. Given desired points anthtemeals, the planned path
trajectories were projected based on the cubic polynomial ofmtieeini each task coordinais,,
Hy, 0l cyz. The initial starting point and the next waypoint were used toveldhe initial
trajectories. The mean position of the robot swarm was required to fall alongldrned
trajectory to prove that the task space controller was alitedp the mean and variance of the
system.

As the swarm moved along the designated path, singulantibke iJacobian, (3), did not
occur. A singularity for this controller could only occur whenuhés form a straight line along
thex ory direction, which cannot occur unless the commanded variance in onédiisiet to
zero.

The primary task of the statistical controller performing U¥@as to control the task
variables, which were the mean and variance of the swarm. Tioadseg task in this
simulation of the system was purely obstacle avoidance. Thess b meant to mimic the
motions of actual AUVs and UUVs, and the most fundamental actisraw@ding obstacles at
all costs.

The simulations for the statistical method were written withslubwing extensive

obstacles unlike the simulations in the behavior-based simulatioagdeeof the computational
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complexity of the calculations and the difficulty in simulatimgtshed controllers of this sort.

For simplicity, the obstacles were shown as circular objects.

5.6.1 Simulation Results of Statistical Controller

One of the first considerations for running the simulation was tyrdate the number of
robots simulated. The swarm of robots was required to satisfgkdviariables, the mean and
variance of the positions in theandy-plane. The minimum number of units for redundancy
was therefore three (each unit possessing, in our simplified enerdapntwo DOF). The two
redundant degrees of freedom enabled the robots to move with somditiyexbbi it did not
allow them to avoid obstacles or mines easily. Obstacle or evoglance demanded more
degrees of freedom from the system to allow the robot swarnat¢b aad adapt to the changing
environment. Therefore, the number of robots was raised to six, prowdjhg degrees of
redundancy and very good swarm flexibility.

Three waypoints were set in this simulation to allow the rolaotadve from an initial
point to a final point. The robot swarm also displayed its abiitgvoid obstacles and move
towards targets as instructed in the task arbiter. The null-spadeoller compensated and
counterbalanced the movements of the robots to allow them to adh#re st mean and

variances.
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The swarm of 6 robots moving through the sequence of waypoints is ghéigure 25.
The squares represent the robots’ position at each moment in timeobte were observed to
perform simple obstacle and mine avoidance tasks. The majoribe abbots in the swarm
clumped together and moved in a similar linear formation while glesnrobot moved away to
ensure that the swarm maintained the desired mean and variancereduit shows that the
statistical controller did not perform other tasks, such as iat®trepulsion or random motion,
which are highly regarded in autonomous robotic motion.

Figure 26 shows the desired (solid) and actual (dashed) meanranmt&af the platoon
over the simulation. The actual and desired mean and variartoe @bt swarm remained the
same with minor disparities of value 0.01. These disparities mgresmple numerical

simulation effects. Code can be found in Appendix H and I.

5.6.2 Conclusions
The results of the simulation show that the robot swarm had poor cowdrtigearea it

was searching, and also had poor secondary task capabilities. Th&ooaus of the robots was
to maintain the mean and variance while performing obstacle am@daAlthough the robots
kept to the projected trajectory of the swarm, they showedihtfigiduality or autonomy when
moving independently. Five out of the six robots present display@thispath characteristics
that did not contribute to maximize the search area. Thus, eachimoibhet swarm needed to
have more autonomy to move around based on its surroundings, while ainhé¢irae staying

within the area designated by the swarm task space control.
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5.7 Important Discovery

An important observation was made regarding this controller. The behaviors dasigne
Sections 3 and 4 return velocity commands to the swarm elements, and wereintétens of
differential equations. The statistical controller relies on second&y ¢éasoded as velocity
commands. Thus, the possibility of combining the controllers together became obvious. The
velocity-based behaviors can be included invttieat defines secondary objectives, while the
motion and spread of the platoon are controlled in a provable manner. Such a combination of the
systems-theoretic and behavior-based approaches ultimately gmve & new hybrid controller
with much greater functionality than either of the original controllers, asdnadual
characteristics of the two schemes were combined to provide some of the hgesaiaach

without the associated drawbacks.
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6. Hybrid Controllers
6.1 Reasons for Hybrid Control

Based on the results from the behavior-based and statisticad|t®st some conclusions
were drawn. Behavior-based systems were seen to be higllweewnhile requiring little
computation, even when controlling a large number of robots (since ssi@msytend to be
decentralized). Unfortunately, as exemplified by the behavieecdapproaches shown in
Sections 3 and 4, coordination and control of a group of robots using onlyrdézedtAPFs
was not practical, nor an especially effective use of themswapabilities. Although using the
centroid as a center of mass for the swarm to calculategeggne potentials makes sense, the
resultant formation for a large number of robots tended to be coiecenith no specific
structure. In fact, for small platoons in open water, the configuraésembled the vertices of a
regular polygon. These behaviors were characteristic of the ustlefobot repulsion as well
as attraction to the centroid. Unfortunately, this result semeedeal purpose for UMCM,; it
effectively constrains the platoon to a loose conglomeration formaitithnenced strongly by
the environment and the parameters of the controller.

In the tested behavior-based systems, there was neither feedipdick to ensure that
the swarm was capable of reaching desired swarm speaifisathor even any guarantee of
stability. While simple combinations of repulsive and attractorees may work for a small
swarms of robots such as those simulated in Sections 3 and 4, sudflersntnay not prove
effective if the number of units employed is in the hundreds. Fhiecause there is no real
coordination between robots except through simple local reaction. oDthest behavior-based
controllers for large swarms of simulated animals have beem teesuffer from stability

problems®®
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System-theoretic methods, on the other hand, have provable performangeldsgned
from the standpoint of stability analysis. An analysis ef $hatistical controller indicated that
even though it had great swarm level control capabilities, the otlenttacked capacity to
introduce intelligence to the system. The robots under statistontrol revealed that they
lacked the ability to make decisions based on their surroundings. Sulmsynopt the other
hand, showed remarkable performance in directing the robots to avoiaclebstmaking
decisions instantaneously. Therefore it made sense to try toreothigise two methods into a
hybrid that would not only grant autonomy for each robot to move around butastrain the
motion of the swarm as a whole using swarm-level functions. HeaigEion in Section 5 has
shown that the statistical controllers are capable of being cothbinén behavior-based
controllers. The task arbiter, used in statistical swarm a@lontts determined to be favorable for
inserting velocity-based behaviors under the motor schema and sulmurapthitectures.

Figure 27 summarizes the comparisons of the controllers.

Characteristics/ Swarm Decision | Provable | Emergent

Controllers Coordination | Making Results | Outcomes
Motor Schema Y N N Y
Subsumption N Y N Y
Statistical Y N Y Y

Y=Yes. N=No

Figure 27: Table of comparison of the controllers

The combination of two structurally different controllers resultedaihybrid that is
incredibly robust, with much better performance than the original ctarsol The remainder of

this section is devoted to development of this new controller and its capabilities.
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6.2 Structure of Hybrid Controller
6.2.1 Hybrid Controller Combining Subsumption with Statistical Method

The simulations in this section show how the statistical and sythsumetontrollers were
combined to result in a hybrid controller. The change made totakistisal controller was
minimal; the task arbiter block was converted to a behavior arbltee. behavior arbiter block
was where the subsumption architecture was embedded. Figure 28tshastsicture of the

hybrid controller while Figure 29 shows the internal organization of the behabitara
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Figure 28: Hybrid controller block diagram
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Behavior Arbiter Block To Null Space Projection Block \
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Figure 29: Behavior arbiter block embedded with suBumption

The behavior arbiter in Figure 29 shows that, within the block, thaseansubsumption
architecture for each robot. That architecture controlled dwerslary tasks for the robot
through a decision making process. The subsumption architecture widexr s$onthe one
developed in the behavior-based section in sedi8rand had the same behaviors programmed
for UMCM as seen in Figure 20. It was ordered as such: thedtigakavior in the hierarchy is
mine avoidance followed by obstacle avoidance, aggregation, separatothen random
motion. The stimuli for activating specific behavior in the hergrwere still based on
calculations of ranges from the robot to another robot, obstacle n@. mrhe robots in the
simulation were assumed to be able to receive range informationdbssacle similar to real
implementation using sensors, which would give relevant ranging iafmmwhen an obstacle

is discovered.
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Additionally, the limit function in the behavior arbiter block effeety prevented all the
robots from reacting to the environment at the same time, thenebyaxing the system. It
limited the number of robots attempting ‘Random_Search’, the loweslt-teehavior in the
subsumption architecture. If there were more than three robotsawaiitle behaviors, the
remaining robots only implemented behaviors of higher priority thamd@m_Search.” This
was a simple method of resource planning intended to minimize geeiraf random motion on
obstacle avoidance of other units by not competing for the ‘redundaméeteof freedom. The
behavior arbiter block sent the expressed behavior for each robot tulttepace projection
block where calculations were done to move each robot to the best pasisatisfy the null-

space and task space variable conditions.

6.2.2 Simulation Results

The simulation result for the hybrid controller is shown in Figd@e The robots
performed obstacle, mine and robot avoidance as they moved along tlee tegectory. The
coverage of the swarm dramatically improved compared to timelagion results of the
statistical controller alone. The improved dispersion of the tajes taken by each robot is
evident from the plots. The randomness was indicative of the mtheezision making
processes in the controller. The decisions made by each robotdifferent based on its
position and environmental factors present. The paths around the ®bgtaelalso distinctive
of the decision process. When a robot was close to an obstacle, llédepgay from it in
response. At the next iteration, once again, each robot had to decideaberwironmental
factors were important enough to be considerédhe robot was not repelled far enough to be

out of the obstacle or mine range, it continued with obstacle oramimidance. However, if the



70

robot escaped the repulsion range of the obstacle or mine, it thdedladat other behavior to
express. This zigzag motion, known as hysteresis, around the obstadiastrated the decision

process that the robots actively engaged in on an individual level.

Motion of Platoon Units with the Statistical Controller
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Even though each robot moved in accordance with the environmental chthegedbots
were still able to maintain the mean and variance of the swaima plots in Figure 31 show the
plot of the mean and variance in the X and Y directions. The desird actual mean and
variance of the swarm were very similar with minute erragain due to computation limits.
This result demonstrated the flexibility of the hybrid controtierhave different robot units
behave in ways to suit the individual’s situation as well asfgatg the swarm’s requirement.

MATLAB codes can be found in Appendix J and K.

6.2.3 Conclusions

From Figures 30 and 31, it was concluded that the hybrid controltéoriped as
expected, tracking the desired swarm mean and variance. WiRiléask-space controller
satisfied the swarm-level functions, the null-space controllearlyl took into account the
decisions made by individual robots, providing substantially increaseauwtoihomy and better

overall area coverage than the statistical controller alone.

6.3 Hybrid Controller with Disturbances

Although the hybrid controller worked well for the initial simtiida, the performance of
the controller in more complex situations was still unknown. The siextlation carried out
attempted to investigate the behavior of the hybrid controller wheretvironment became
more complex. This was accomplished by the addition of a simple drift term idtendwdel a
current field. The drift in a real underwater environment ifligariable and unpredictable,
hence any controller to be used in such an environment would requirgeadagree of

robustness and flexibility so that it could react and compensatthé external disturbance.
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Figure 32 shows the addition of an environmental disturbance block ottiediagram for the

hybrid controller while Figure 33 illustrates the simulated drift custent

Task Space Controller

,,,,,,,,,,,,,,,,,,,,,,,,

’—> S

§= T (K (fo(@) = Flg)+ filg)+ T =T Ty

4

L s A Proportional I S | Swarm
| v, : Control, K State
e
: Oy Null-space e
D 'LEjf\/I ********************* ' control Sy
esired Mean ry :
and variances, f, _ (I=T' Ty
:> Er_mronment
Disturbance | : T
Arbiter
Subsumption /7 t
Feedback Mean
and Variance, f S
Functions

Figure 32: Hybrid controller block diagram with environmental disturbance
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The non-uniform vector arrows in the above field plot represented tiewment that
would be expected in an undersea environment. The individual vedrafi®ws in the
simulation denote the direction of the current flowing at a given paintike a real drift current
with laminar flow, the direction of flow at different points in thienulated current field varied
discretely across the space. This flow field representedtesmeely challenging sample so that
it was possible to test the limits of the capabilities of she&rm. The simulated current
(environmental disturbance) was added to the commanded velocity fof@zat in the robot

swarm, based on its location, at each iteration of the simulation.

hiotion of Platoon Units with the Hybrid Controller Without Wector Compensation
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Figure 34 illustrates the motion of the robots as they movey dlm same designated
path as in the simulations from Section 5.6.1. Different from thalirstmulation, it was
observed that the robots were pushed away in the direction of the aamcentere not able to
counteract the effects of the additional drift currents. Siheeflow field moved from left to
right, the error in the mean and variance in the x direction waehid-igure 35 shows how the
addition of the environmental disturbance affected the mean and vadantel. It is worth
noting that the error seen in these plots could be somewhat reduc&tcrbgsing the
proportional gain. Even though the robot swarm did not match the desiesziargjexactly, it
still followed the general form of the desired motion and fulfilledividual task requirements,
avoiding collisions with surrounding objects and fellow robots. MATLAB codes can be found in

Appendix L and M.
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Figure 35: Plot of mean and variance of a hybrid catroller in a drift current
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6.3.1 Conclusions

The swarm was not successful in achieving the desired task fuf{jievhen faced with
simulated drift current. The robots were dispersed outwards, faaraythe desired mean with
the actual mean being consistently higher, which was expbeatat on the drift current. The
variance, on the other hand, was very poorly controlled. The swarmptask sontroller failed
to satisfactorily limit the position of the robots based on theamad. The addition of the
external stimulus demonstrated a weakness of the controlletunktely, the systems-theoretic
nature of the primary task controller led to an improved implementasing standard tools of

feedback control design.

6.4 Hybrid Controller with Vector Compensation

Based on the results of Section 6.2, the hybrid controller wasdalie take into account
the environmental errors present. A task-space error integt@tck was added to the hybrid
controller to compensate for the error produced between the desirexttaatl position of the
mean and variance. The addition of the integrated error enableglthe controller to slowly,
over time, compensate for the influence of the vector field. Fig@rehows where the error

integration block was added into the hybrid controller.
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Figure 36: Block diagram of a hybrid controller with vector compensation

Figure 37 demonstrates the effect of including the task-spaoe integration block,
which effectively removed the error as seen in Figure 38. Althabighpaths of the swarm
elements were not clearly ‘better’ than those of the simulatitinout the integral term, the
calculation of the desired and actual mean and variance of the vadooh $n Figure 37 showed
significant improvement in tracking the desired task function. ftegial control dramatically
improved the mean tracking characteristics. The varianceotonthile not as clean as the
mean, still effectively improved performance by decreadiegriaximum error from the desired
variances. A direct comparison of mean-squared error over tbetdry would be misleading,
as the paths of the units passed through different vector fields throughout thentihadisins.

The difficulty in maintaining the variance of the swarm vdage to the effect of the
varying drift factors. The vector field was set up such thahdnges spatially as the robots

reach different positions. Nevertheless, the simulations showed thgbrid controller with
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vector compensation works much better since the controllers adaptedtiba of each robot to
suit the objectives of the swarm. In this case, the swareh ddjectives were not compromised
while the task objectives were being achieved. MATLAB codes edound in Appendix N and

0.
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Figure 38: Tracking errors for a hybrid controller with vector compensation

6.4.1 Conclusions

The new hybrid controller showed greater versatility and robustmd®en it was
modified to include the task-space error integration block that ¢edd¢or the addition of the
vector fields in the system. The new hybrid controller theref@e both quantitative and
gualitative improvements over its parent controllers; it has emgction for improved
robustness, decision-making capabilities to give the robots enhandetiabititelligence for
potentially better swarm usage, and the ability to regulasersvevel functions of the platoon

state. No other controller has all of these capabilities.
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7. Summary of findings

This project has effectively and thoroughly studied two specifpes of control
methodologies for a swarm of robots performing underwater UMCM. Béteavior-based
methods showed their strengths and limitations in the earlieoisgan the research. Behavior-
based systems are highly flexible and robust systems, as tedynoe have a lot of specific
information about the surroundings they are in. They only requireimg&algensor data to
trigger individual behaviors. The motor schema approach was effdotiveontrolling the
motion of the individual robots within a swarm, but lacked flexibibtyany provable stability
due to its lack of a feedback controller to regulate the perforenainthe system. Subsumption,
on the other hand, showed poor aptitude for swarm control. On an individual mewdbethe
subsumption structure gave each robot a nominal amount of artifi@igence for it to carry
out its tasks. Each robot in the swarm was able to decide what the next behaskritoshould
perform was, based on environmental information alone. As a reaah, irdividual robot
moved in a distinct path, different from its neighboring robots. Thuss, sivarm lacked
coordination except on the most basic level (collision avoidance).

Statistical control was the systems-theoretic contrdiiat was investigated. Statistical
control uses classical control methods combined with techniquesr&dumdant manipulator
control to determine motion commands for each member in a robot swaire. original
statistical controller was able to move the swarm effegtivigllowing a desired task-space
trajectory defined by swarm mean and swarm variancethoédh the robot swarm avoided
obstacles while it moved from waypoint to waypoint, it did not showliggace in deciding

what path it was taking. Effectively, the redundancy of the swarm wasetiaised.
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A qualitative comparison of the 3 methods indicates that motor schlbawed the least
potential because it neither produced good provable performance nonsteated good robot
intelligence or a decision-making structure. Subsumption proved gatiigy in handling the
individual robots through its decision-making capabilities, but showed &nees in swarm
coordination. The statistical controller demonstrated good performamickacked the artificial
intelligence required for the autonomous agents to work well inralerwater environment.
Therefore, it made sense that a hybrid between the swtistimtroller and subsumption
architecture could result in a more robust system that could handle the demandsMf UMC

In the process of developing the analysis simulations, an impdiéntvas made
between two methods. The statistical controller used difiatepfjuations to represent
secondary tasks to be carried out. The possibility of hybridiguiggumption and statistical
methods was immediately recognized since the subsumption codes, alrggtyiwdifferential
equations, could be embedded into the statistical controller codes tatgemérybrid. Creating
a hybrid controller meant that the product would be highly veesatian unknown environment
while still being able to meet provable performance demandghdforore, the ability to make
decisions in an unknown environment was seen to be critical for improviednpance in real-
world situations.

The creation of the hybrid controller proved to be successful. Hudtast controller
demonstrated the best characteristics of its parent contreiggisying the individual behavior-
based tasks as well as regulating swarm level functions whilerequiring only minimal
planning. The subsumption architecture allowed the swarm to mak®odscbased on the

simulated environment and as a result, gave rise to emergent,rimadeteéc paths. The
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statistical controller framework enabled the swarm to traek dasired mean and variance
trajectories.

A weakness of the hybrid system was observed in the testing, phaese drift factors
were added into the simulation. Under these disturbances, thd bgbtroller was incapable of
regulating swarm mean and variance, although the system remgabézl and still carried out
the mission.

To compensate for the difficulty of the hybrid controller wiglgards to drift vectors (and
any other velocity disturbances), a task-space error integraiek blas added to the hybrid
controller. The compensated system was able to overcome thes aeffethe external drift
factors.

In closing, this project involved the investigation of three distiechniques for swarm
control of robots in the UMCM domain. The simulations shown in thisare demonstrated
numerous features, including the strengths and weaknesses ofrtbas swarm control
techniques. A hybrid controller with qualitative and quantitative awpments over the parent
controllers was also created. The investigative portion ofpildgect should serve as a good
overview for future work on a real-world implementation of swarmtrotlers for underwater,
surface or land multi-agent controls. Further, the new hybrid ctertrelpresents an important
contribution to the field of robot swarm control, as it combines systbsoretic and behavior-

based methods into a cohesive framework.
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% Appendix A

% Yong Chye Tan

% Trident Project Simulation1

% Simulation of 1 robot in a 2-D field avoiding obstacles

function Idot = oas(t,p)
global Obst

Katt = 1; %attractive gain

Krep = 1; %repulsive gain

Xobst = 2; %x coodinate of obstacle
Yobst=3; %y coodinate of obstacle

r=0.1; % sensing radius of holonomic robot
R=0.5; %magnitude of radius of obstacle
rho =R+ 0.5; %maginitude of radius of influence of obstacle
3 %x coodinate of target

Yt=5; %y coodinate of target

x=p(1); %x coordinate of holonomic robot
y=p(2); %y coordinate of holonomic robot

plot(Xobst, Yobst,"*"); % plot center of obstacle
theta_att= atan2(Yt -y, Xt-x); % attractive angle
xatt = Xt- x; ; % x dist of attractive vector

yatt = Yt-y; %y dist of attractive vector

L = [xatt ; yatt]; % vector to show length of attractive vector

Mag_L= sqrt(L*L); %magnitude of length

attctrl = Katt*[(Mag_L)*cos(theta_att) ;(Mag_L)*sin(theta_att)]; %attractive
control, potential

%repulsive control

theta_rep= atan2(y-Yobst, x-Xobst); %angle of repulsion
xdist = x-Xobst-R*cos(theta_rep) ; %x distance of vector
ydist = y-Yobst-R*sin(theta_rep); %y distance of vector
Length = [xdist ; ydist]; % vector to delineate length
Mag_Leng=sqrt(Length*Length); %magnitude of Length

if (Mag_Leng<(rho-R))
repctrl=Krep*[(1/Mag_Leng)*cos(theta_rep)-(1/(rho-R))*cos(theta_rep);

(1/Mag_Leng)*sin(theta_rep)-(1/(rho-R))*sin(theta_rep)] ; % repulsion
control. potential

else
repctrl=[0;0];

end

Idot = repctrl + attctrl; %controller
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% Appendix B

% Yong Tan

% Trident Scholar Project

% distcalc to be used to find distance from each other
function Idot= distcalc(t,p)

[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;

r=zeros(count,2);

A=0;

fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;,
1(y,2)=p(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
r(y,1)=p(i,1);
nd

el
end
Katt=1; % attractive constant

Krep=10; % repulsion constant

% find centroid of all 3 robots

[n, m]=size(r); % size of robo vector

A=sum(r,1); % sum of all x,y coordinates
Xc=A(1,1)/n; % x-coordinate of centroid of all robots
Yc=A(1,2)/n; % y-coordinate of centroid of all robots
plot(Xc, Yc,™);

hold on;

Y%Attractive control
att=zeros(n,m); %create matrix

for i=1:n
att(i,1)=Xc-r(i,1); % find x attractive potential
att(i,2)=Yc-r(i,2); % find y attractive potential
end

attctrl= Katt* att;
rep=zeros(n,2);
ga=zeros(1,2);
gb=zeros(1,2);

for i=1:(n-1) % Matrix to write the repulsive potential

for j=2:n % by reducing the number of times each point is added, we run

the matrix 1/2 the required times
ifi==j % if i=j, same point, thus discard
else
Xa=r(i,1);
Ya=r(i,2);
Xb=r(j,1);
Yb=r(j,2);

dist_ab=sqrt(((Xa-Xb)"2) +((Ya-Yb)"2));
theta_ba=atan2(Ya-Yb, Xa-Xb);

ga=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
rep(i,:)=rep(i,:))+qa;

b= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)];

rep(j,:)=rep(j,:)+ab;

end

end
end

repctrl= Krep*rep;

g=zeros(n,m);
gspec=zeros((n*m),1);

q = attctrl + repctrl; %sum of attractive and repulsive controller
counter=0;
for i=
for j=1:m
counter=counter+1;
gspec(counter,1)=q(i,j);

end
end

Idot=gspec;
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% Appendix C
% Yong Tan
% Trident Scholar Project

% distcalc to be used to find distance from each other
function Idot= multiobst(t,p)

%list constants

global obst

Katt=1; % attractive constant

Krep=5; % repulsion constant

Kattarget=5; % attractive constant to target
Kreptar=15; % repulsion constant from obstacle
Xt=20; %px-coordinate of target

Yt=20; %y-coordinate of target

R=0.5; %radius of obstacle
rho=R+1; %radius of influence
%%%%%%%6%%%%% %% %% %% %% %% %% % %% %% % %% %% %% %% % %% %% %% %% % %% % % %% %% % %% % % % %
[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;
r=zeros(count,2);
A=0;
fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;,
r(y,2)=p(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
r(y,1)=p(i,1);
end

end

% find centroid of all 3 robots
[n, m]=size(r); % size of robo vector

A=sum(r,1); % sum of all x,y coordinates
Xc=A(1,1)/n; % x-coordinate of centroid of all robots
Yc=A(1,2)/n; % y-coordinate of centroid of all robots
%plot(Xc, Yc,™);

%hold on;

%Attractive control
att=zeros(n,m); %create matrix

fori=1:n
att(i,1)=Xc-r(i,1);
att(i,2)=Yc-r(i,2);
end

% find x attractive potential
% find y attractive potential

attctrl= Katt* att;

%%% %% % %6%%%%% %% %% %% %% %% %% % %% %% %% %% % %% %% % %% %% %% %% % %% %% %% %% % %% % % % %
% attractive potential of individual points to target

attargetctrl=zeros(n,m);

for i=1:n
Xattar=(Xt-r(i,1));
Yattar=(Yt-r(i,2));
theta_target = atan2(Yattar,Xattar); % angle of attracion to target

|I=[Xattar ; Yattar]; % vectorto show length of attractive vector to target
Mag_l=sqrt(I*l); %magnitude of length

attargetctrl(i,1)= (Mag_l)*cos(theta_target);
attargetctrl(i,2)= (Mag_l)*sin(theta_target);
end
attargetctri=Kattarget*attargetctrl;
%%%%%%6%6%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% % %% %% %% %% % %% % % % %
%repulsive potential away from each other
rep=zeros(n,2);
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ga=zeros(1,2);
gb=zeros(1,2);

for i=1:(n-1) % Matrix to write the repulsive potential
for j=2:n % by reducing the number of times each point is added, we run
the matrix 1/2 the required times
ifi==j % if i=j, same point, thus discard
else
Xa=r(i,1);
Ya=r(i,2);
Xb=r(j,1);
Yb=r(j,2);
dist_ab=sgrt(((Xa-Xb)"2) +((Ya-Yb)"2)); % distance from each point
theta_ba=atan2(Ya-Yb, Xa-Xb);
ga=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
rep(i,;)=rep(i,:)+ga;

b= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)];
rep(j,)=rep(j,)+ab;
end
end
end

repctrl= Krep*rep;

%%%%%%6%6%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% % %% %% %% %% % %% % % % %
%repulsive control away multiple obstaclesfrom the obstacle

reptarget=zeros(n,m);

totalrepobst=zeros(n,m);
[w,v]=size(obst);

for k=1:w
fori=1:n
theta_obst = atan2(r(i,2)-obst(k,2),r(i,1)-obst(k,1)); % angle of repulsion
form obstacle
Xdist=(r(i,1)-obst(k,1)-R*cos(theta_obst));
Ydist=(r(i,2)-obst(k,2)-R*sin(theta_obst));

L=[Xdist ; Ydist]; % vectorto show length of repulsion vector to obstacle

Mag_L=sqrt(L"*L); %magnitude of length
if (Mag_L<(rho-R))
repobst(i,1)= ((1/Mag_L)*cos(theta_obst))-((1/(rho-R))*cos(theta_obst));
repobst(i,2)= ((1/Mag_L)*sin(theta_obst))-((1/(rho-R))*sin(theta_obst));
else
repobst(i,1)= 0;
repobst(i,2)=0;
end
end
totalrepobst=totalrepobst+repobst;
end
reptarget=Kreptar*totalrepobst;
%% %% %% %%%%%% %% %% %% %%%6% %% %% % % % %% %%6%% %% % % % % % %% %% %% % % % % % %% %% %% %% % %
g=zeros(n,m);
gspec=zeros((n*m),1);
q = attctrl + repctrl + attargetctrl + reptarget; %sum of attractive and
repulsive controller
counter=0;
fori=
for j=1:m
counter=counter+1;
gspec(counter,1)=q(i,j);
end
end

Idot=gspec;



% Appendix D

%Yong Tan

%Trident project

%Dbehavior based: program to run simulation with multiple robots

global obst% list obstacles as a global variable

R=0.5;

rho=1+R;

%% %% %% %%%%6%6%% %% %% %%%%6%%6%6% % % % % %%%6%6% %% %% % % % %% %9696 %% % % % % % %% %% %% %% % %
%create obstacles insimulation

obst=obstl; %using preset data points as references for sqobst
robot=[006034976501];
[t,p]=0de45('multiobst', [0,60],robot); %run program for specified robot points

%%% %% %% %%%%% %% % % %% %% % %% % % %% %% % %% %% %% %% %% %% % %% %% %% %% % %% %% % %% % % %%
[n,m]=size(robot); %converting the column vector into a 3*2 vector
count=n/2;
newrobot=zeros(count,2);
A=0;
fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;,
newrobot(y,2)=robot(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
newrobot(y,1)=robot(i,1);
end
end
%% %% %% %%%%%% %% %% %% %%%6% %% %% %% % %% %%6%% %% % % % % % %% %6% %% % % % % % %% %% %% %% % %
[w,m]=size(newrobot);

for i=1:w
plot(newrobot(i,1),newrobot(i,2),'+');
end

fori=1:n
if rem(i,2)==0

else
next=i+1;
plot(p(:,i),p(:,next)) ;
end
end

title( '3 robots movig and avoiding obstacle');
xlabel('x-coodinates');
ylabel('y-coodinates');

grid;

figure(2);
%end

plot3(t,p(:,1).p(:2),");
hold on;

plot3(t,p(:,3),p(::4),'p--");
plot3(t,p(:,5),p(:,6),'0-);
plot3(t,p(:,7).p(:,8),'y-.");
plot3(t,p(:,9).p(:,10),'m-");
plot3(t,p(:,11),p(:,12),'9-*);

title(* individual tracks taken by each robot’);
xlabel(‘'time-coodinates');
ylabel('x-coodinates');
zlabel('y-coodinates');

grid;

legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot','Track of 4th

robot','Track of 5th robot','Track of 6th robot')
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%Appendix E1 03 =[03; 03(1, 3)];
% Yong Tan OBST =[01'; 02' [0 0]'; O3' [0 0]]
% Trident Scholar Project end
figure(1);
function ob=obst() clf;
% This file sets up vetices axis([0 20 0 20]);
% for a number of obstacles hold;
% The C-space equivalent is end
% drawn at runtime. ob=0BST;
global NUM

ans = input('Do you wish to generate new obstacles (y/n)? ', 's');

if (ans ==y")
NUM =[j;
N = input('How many obstacles do you wish to generate? ');
figure(1);
clf;
axis([0 20 0 20));
hold;
OBST =];
fori=1:N

temp = ['Obstacle #', num2str(i), : Click on each vertex in CLOCKWISE order.
Double-click final vertex.";

disp(temp);

input('Press ENTER when ready');

[xo, yo] = getpts;
[n, m] = size(OBST);
X0 = [x0; xo(1)];
yo = [yo; yo(1)];
fill(xo, yo, 'r');
I_new = length(xo);
if (_new < 3)
error(‘An obstacle must have at least 3 vertices');
end
NUM() = I_new - 1;
if (m <1_new)&(m > 0)
OBST = [OBST, zeros(n, |_new - m)];
end
if (m > 1_new)
X0 = [x0; zeros(m-I_new, 1)];
yo = [yo; zeros(m-I_new, 1)];

end
OBST = [OBST; x0'; yo'];
end
else
ans = input('Choose: 1 Last set of obstacles, 2 Standard: *);
if (ans ==2)

NUM = [4 3 3]; % Number of vertices for each
obstacle

Ol1=[11; % that is an 'oh1’, not a
‘zerol'
112;
22.1;
211.1);

01 =[01; 01(1, 1)];

02=[44;
62;
4.12.1];

02=[02; 02(1, )];
03=1[66;

86.1;

8.14j;



%Appendix E2

%Yong Tan

%Trident project

%behavior based: program to run simulation with multiple robots

global obs% list obstacles as a global variable
global target
global NUM

96%%% % %% %% % %% %% %% % % % %% %% % % %% %% % % % %% %% % % %% %% % % % %% %% % % %% %% % % % %% %% %
%create obstacles in simulation

obs=obst; %create obstacles in plot
[row,col]=size(obs);

%matrix to store command positions
pts=inputpoints; %Get points
[roww,coll]=size(pts);
robot=zeros((roww-2),1);

for i=1:(roww-2)
robot(i,1)=pts(i,1);

end

target=zeros(1,2);

target(1,1)=pts(roww-1,1);

target(1,2)=pts(roww,1);

[t,p]=0de45('avoidobst', [0,60],robot); %run program for specified robot points

%%% %% %% %%%%% %% % % %% %% % %% % % %% %% % %% % % %% %% %% %% % %% %% % %% % % %% %% % % %% % %%
[n,m]=size(robot); %converting the column vector into a 3*2 vector

count=n/2;

newrobot=zeros(count,2);

fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;
newrobot(y,2)=robot(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
newrobot(y,1)=robot(i,1);
end

9%6%%% %% %% %% %% %% %% % %% %% %% % % %% %% % % %% %6 %% % % %% %% % % % %% %% % % %% %% % % % %% %% %
%plotting position of the new robots
[w,m]=size(newrobot);

for i=1:w
plot(newrobot(i,1),newrobot(i,2),"+");
end
% plotting positions of the paths
fori=1:n
if rem(i,2)==0
else
next=i+1;
plot(p(:,i).p(:.next)) ;
end

end

title( '3 robots moving and avoiding new obstacle’);
xlabel('x-coodinates');

ylabel('y-coodinates');

grid;

[row,col]=size(p);

robot=p(row,:)’;

%end
figure(2);

plot3(t,p(:,1),p(:,2),'r:");

hold on;

plot3(t,p(:,3),p(:,4),'9--);

plot3(t,p(:,5),p(:,6),'c-);

title(* individual tracks taken by each robot in new obstacle’);
xlabel(‘time-coodinates');

ylabel('x-coodinates');

zlabel('y-coodinates');

grid;

legend(‘Track of 1st robot','Track of 2nd robot','Track of 3rd robot')
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if (min_dist < rho) % inside radius of influence
Frep = [cos(angle_push) sin(angle_push)]*eta*(1/(min_dist-0.25) - 1/(rho-
0.25))*1/(min_dist"2);

%Appendix E3
% Yong Tan
% Trident Scholar Project

%edited from Prof Bishop else
Frep =[00]; % outside radius of
% This function takes a robot position (x,y) influence
end

% and a vector of obstacle vertices OBST as

% well as a vector NUM that contains the number
% of vertices per obstacle. It returns the

% repulsive force vector Frep

% No obstacle should have two vertices on the

% a horizontal line.

function Frep = repulse(x, y, OBST, NUM)

eta=0.5; % Coefficient for repulsive potential
rho = 1.5; % Maximum distance for repulsive field of
obstacles

min_dist = 100000; % initialize to "infinity"
for i = 1:length(NUM)
for j = 1:NUM(i)

x1 = OBST(2*-1, j); % current vertex x
X2 = OBST(2%-1, j+1); % next vertex x
y1=0BST(2%, j); % current vertex y
y2 = OBST(2%, j+1); % next vertex y
if (x2 ~=x1)

slope = (y2-y1)/(x2-x1); % side slope
else

slope = Inf;
end
y_inter = y1 - x1*slope; % side y-intercept
A = slope;
B=-1;
C =y inter;
dist = abs((A*x + B*y + C)/sqrt(A*A + B*B)); % distance from robot (x,y)

to side

if (dist < min_dist)
angle_edge = atan2(y2 - y1, x2 - x1); % angle of edge
angle_test = angle_edge + pi/2; % angle of force vector
%pt = [x1 + cos(angle_test); y1 + sin(angle_test)]; %
pob =[x + cos(angle_test + pi)*dist;
y + sin(angle_test + pi)*dist;]; % closest point on extended

edge
d1 = norm([pob(1) - x1; pob(2) - y1]); % distance from extended edge
intercept
% to current vertex
d2 = norm([pob(1) - x2; pob(2) - y2]); % distance from extended edge
intercept
% to current vertex
I = norm([x1 - x2; y1 - y2]); % distance from vertex to
vertex
if (max([d1, d2]) > I) % extended edge intercept NOT
between
% vertices... do nothing
else
min_dist = dist; % closest point is between
vertices
angle_push = angle_test; % push away from edge
end
end
dist = norm([x - x1, y - y1]); % distance to vertex
if (dist < min_dist) % closest point is at vertex
min_dist = dist;
angle_push = atan2(y - y1, x - x1); % push away from vertex
end
end

end



% Appendix F

%Yong Tan

%Trident project

%behavior based: program to run simulation with multiple robots

global OBST% list obstacles as a global variable
global target

global NUM

global MINES

9%%%% % %%%%% %% %% %% % %% %% %% %% %% %% % % % %% %% % % %% %% % % % %% %% % % %% %% % % % %% %% %
%create obstacles in simulation

obstone;%create obstacles in plot
MINES=mines;

OBST=0b;

[row,col]=size(OBST);

%matrix to store command positions
pts=inputpoints; %Get points
[row,col]=size(pts);
robots=zeros((row-2),1);

for i=1:(row-2)
robot(i,1)=pts(i,1);

end
target=zeros(1,2);
target(1,1)=pts(row-1,1);
target(1,2)=pts(row,1);

[t,p]=ode45('findmine’, [0,50],robot); %run program for specified robot points

96%%% % %% %% %% %% %% %% %% %% %% % % %% %% % % % %% %% % % %% %% % % % %% %% % % %% %% % % % %% %% %
[n,m]=size(robot); %converting the column vector into a 3*2 vector

count=n/2;

newrobot=zeros(count,2);

fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;
newrobot(y,2)=robot(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
newrobot(y,1)=robot(i,1);
end

%%% %% %% %%%%% %% % %% %% %% %% % % %% %% %% %% % %% %% %% %% % %% %% %% %% % %% %% % %% % % % %
[w,m]=size(newrobot);

fori=1:w
plot(newrobot(i,1),newrobot(i,2),"+");
end
fori=1:n
if rem(i,2)==0
else
next=i+1;
plot(p(:,i),p(;,next)) ;
end
end

title( '3 robots movig and avoiding obstacle’);

xlabel('x-coodinates');
ylabel('y-coodinates');

[row,col]=size(p);

robot=p(row,:)";
%end

% figure(2);

%

6 plot3(t,p(:,1),p(:,2),"");
% hold on;

% plot3(t,p(:,3),p(:,4),"
6 plot3(t,p(:,5),p(:,6),-);

%title(* individual tracks taken by each robot');
%xlabel(‘time-coodinates');

%ylabel('x-coodinates'’);

%zlabel('y-coodinates’);

%grid;

%legend('Track of 1st robot', Track of 2nd robot', Track of 3rd robot')

X

X
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%Appendix G
% Yong Tan
% Trident Scholar Project

% This program is used to determine how the subsumption architecture affects the
movement of the
% robot since it is rule based and subjected to its location within the hierachy.

function pdot= subsumption_wp(t,p)
%list constants

global T

global brownian

global leg

global OBST

global ROBOT

global INITIAL_ROBOT
global WAYPTS

global NUM

global MINES

global counter

%initiliase gains

Katt=2; % attractive constant

Krep=5; % repulsion constant

Kreptar=15; % repulsion constant from obstacle

R=0.3; %radius of obstacle
rI=0.2; %sensing radius
rho=R+0.2; %radius of influence of robot

9%%%%%%%%%%%%6%%%% %% % %%%%%%%% %% % %% %% %% %% %% % % % %% %% %% %% % % % % %% %% %% %%

[n,m]=size(p); %converting the column vector into a 3*2 vector
count=n/2;
ROBOT=zeros(count,2);
fori=1:n %conversion of a 6 by 1 column vector into a 3 by 2
if rem(i,2)==0 %if i is even move to 2nd column
y=il2;
ROBOT(y,2)=p(i,1);
else %if i is odd, move to 1st column
y=(i+1)/2;
ROBOT(y,1)=p(i,1);
end

end
9%6%%%%%%6%%% %% %% %% % % %% %% % %% %% %% % % %% %% % % % %% %% % % %% %% % % %% %% % % % %% %% %% away from obstacles

% begin subsumption architecture,
% highest order, avoid obstacle; detect mine; gathering; random motion

% matrix to store resultant vector
resultant=zeros(size(ROBOT));

%1. find closest mines
Notarget=disttarget(MINES,ROBOT);

%2. find shortest distance
minobstdist=calculatemindist(OBST,ROBOT,NUM);
Frep=[];

%3. find separation of robots
[n, m]=size(ROBOT);
robodist=robotdist(ROBOT);
close_d=min(robodist);
count=0;
%%% %% %% %%%%% %% % %% %% %% %% % % %% %% % %% % % %% %% %% %% % %% %% %% %% % %% %% % %% % % % %
Yp*rrrikrikiiikiikg  hbsumption part of codes
fori=1:n
position=0;
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% for every robot calculate closest mine
% 1. Highest order: Avoid mines, tag them and store positions
if (Notarget(i,1)<=0.3)
% repulse away from target and change them into a potential
position=(Notarget(i,2));
%find the index of the closest mine
counter=counter+1;
if (counter>5);

plot(MINES(position, 1), MINES(position,2),'gd");
counter=0;
else
end
[rows,cols]=size(MINES);
totalrep=zeros(n, m);
repmine=zeros(n, m);

% finding size of mine

theta_mine = atan2(ROBOT(i,2)-MINES(position,2),ROBOT(i,1)-
MINES(position,1)); % angle of repulsion form obstacle

Xdist=(ROBOT(i,1)-MINES(position,1)-rI*cos(theta_mine));
Ydist=(ROBOT(i,2)-MINES(position,2)-rI*sin(theta_mine));

% vectorto show length of repulsion vector to obstacle
Mag_L=norm([Xdist ; Ydist]); %normalize vector for magnitude of length

repmine(i,1)= ((1/Mag_L)*cos(theta_mine))-((1/(rho-
rl))*cos(theta_mine));

repmine(i,2)= ((1/Mag_L)*sin(theta_mine))-((1/(rho-
rl))*sin(theta_mine));

random(i,:)= randn(1,2);
totalrep(i, reptar*(repmine(i,:)+ random(i,:));
resultant(i,:)=totalrep(i,:);

else
%%% %% %% %%%%% % %% % %% %% % %% % % %% %% %% %% % %% %% % %% % % %% %% % %% % % %% %% % %% % % %%
% #2 AVoid closest obstacles
if (minobstdist<0.8)

%repulsive control away from multiple obstacles

templ=ROBOT(i,1); % set first x coor of robot to templ
temp2=ROBOT(i,2); % set firsty coor of robot to temp2

Frep(i,:) = repulse(templ, temp2, OBST, NUM); % find repulsive force

%random_var=0.3*randn(1,2); %add random variable
Repelobst(i,:)=Frep(i,:);%+brownian; %create final vector
resultant(i,:)=Repelobst(i,:); % store in new vector

% disp(‘Avoid’)
else

%% %% %% %%%%6%%% %% % %% %%%6%%6%6% % % % % %% %% %% %% % % % % %% %9696 %% % % % % % %% %% %% %% % %
if (close_d>3)
% if the distance between robots were greater than 5,less than
20,
%ignore, computational error
resultant=zeros(n,m);

elseif ((close_d>1) & (close_d<=2))
% find centroid of all 3 robots
[n, m]=size(ROBOT); % size of robo vector
A=sum(ROBOT,1); % sum of all x,y coordinates
Xc=A(1,1)/n; % x-coordinate of centroid of all robots
Yc=A(1,2)/n; % y-coordinate of centroid of all robots



%Attractive control

att=zeros(n,m); %create matrix
Mag_change=norm([Xc-ROBOT(i,1),Yc-ROBOT(i,2)]);
theta_att=atan2(Yc-ROBOT(i,2),Xc-ROBOT(i,1));

att(i,1)=Mag_change*cos(theta_att); % find x attractive

potential

att(i,2)=Mag_change*sin(theta_att); % find y attractive
potential

attetrl(i,:)= Katt* att(i,:); % attractive potential
towards each other

resultant(i,:)=attctrl(i,:); % assigning matix to
resultant

% disp(‘gather’)

elseif ((close_d<0.5) & (close_d>0))
%repulsive potential away from each other
rep=zeros(n,2);
ga=[]; %value to store repulsive vector to be added in one
direction
gb=[]; %value to store repulsive vector to be added in other
direction(+pi)
if (i<= (n-1)) % Matrix to write the repulsive potential
for k=2:n % by reducing the number of times each
point is added, we run the matrix 1/2 the required times
ifi==k % if i=j, same point, thus discard
else
Xa=ROBOT(i,1);
Ya=ROBOT(i,2);
Xb=ROBOT(k,1);
Yb=ROBOT(k,2);

dist_ab=sqrt(((Xa-Xb)*2) +((Ya-Yb)*2)); % distance
from each point

theta_ba=atan2(Ya-Yb, Xa-Xb);

ga=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];
rep(i,:)=rep(i,:)+ga; % vector from one robot to
another

gb= [(1/dist_ab)*cos(theta_ba+
pi),(1/dist_ab)*sin(theta_ba+pi)];
rep(k,:)=rep(k,:)+qb; % reciprocal vector from
one robot to another
end
end
else
end
repctrl(i,:)= Krep*rep(i,:);
resultant(i,:)=repctrl(i,:);
% disp(‘'spread’)

x = ROBOT(j,1);
y = ROBOT(j,2):

att_d(i,:) = [x_d - x, y_d - y]; % attractive vector towards
desired position
magnitude=sqrt((x_d - x)"2+ (y_d - y)"2);
if (magnitude > 1)
att_d(i,:) = (att_d(i,:)+ brownian)/magnitude; %
normalize vector, <1
else
if (magnitude < 0.1) % if position is <0.1 to desired

waypoint
if (leg < length(WAYPTS))
leg =leg + 1 % change waypoint
else
leg = leg;
end
end
end
ift>T)
T=T+0.5;
resultant(i,:) = att_d(i,:) + 3*brownian;
else
resultant(i,:) = att_d(i,:);
end
resultant;
% disp(‘brownian’)
end
end
end
end

%%%% %% % %% %% % %% %% % %% %% % %% %% % %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %

[n,m]=size(resultant);% convert the n,m matrix = n*m,1 matrix
counter=0;
gspec=zeros(n*m,1);

fori=1:n
for j=1:m
counter=counter+1;
gspec(counter,1)=resultant(i,j);
end
end
pdot=gspec;

%% %% %%%%%%%% %% % % %% %% %%% %% % % %% %% %% %% % % % % %% %% %% %% % % % % %% %% %% %% %% % %

%successful code for random motion
%Create random points
elseif( (close_d>0.3) & (close_d<1.0))
%separate x,y components into different matrices
[roww,col]=size(WAYPTS) ;
brownian = randn(1,2);

x_d = WAYPTS(leg, 1);
y_d = WAYPTS(leg, 2);

[n,m]=size(ROBOT);

att_d=zeros(1,m);
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% Appendix H

%Yong Tan

% Trident Scholar Project

% This file runs the program, improvedstat, to demonstrate the effects of 6 robots

% performing obstace avoidance while maintaining the mean and variance of the swarm
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of

X
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of

y

global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num

global leg tf Xmine Ymine

global traj_hist

traj_hist = [];
num=6; % number of robots
R=1, % Radius of obstacle

mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf =[5 3 5];
vardyf =[3 5 3];

Km =3; % 3  motion constant

Kv =3; % 3  velocity constant

Ka=5; %1 % acceleration constant

RAD = 2; % minimum separtion distance between robots

RRAD =0.5; %1 % minimum distance between individual robots to obstacle
Radmine=0.3;

record = 0;

Xobst=[3610]; %6
Yobst=[484], %8
Xmine =[ 7 10];
Ymine =[ 10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[012343.81050202125];

mudx = mean(qO(1:num));

mudy = mean(qO(num+1: 2*num));
vardx = var(q0(1:num));

vardy = var(qO(num+1: 2*num));

forzz=1:3
tfl = tf/3 + tf/3*(zz-1);
til = tfl - tf/3;
%polynomial interpolation
if (zz>1)
mudx = mudxf(zz-1);
mudy = mudyf(zz-1);
vardx = vardxf(zz-1);
vardy = vardyf(zz-1);
end
Cx = [tir3 tiln2 til 1; 3*til"2 2*til 1 0; tA3 A2 tl 1; 3*tfr2 2*tfl 1
0]7(-1)*[vardx; O; vardxf(zz); 0];
Cy = [ti*3 til"2 til 1; 3*til"2 2*til 1 0; t"3 tfA2 tfl 1; 3*tfr2 2+*tfl 1
0]*(-1)*[vardy; O; vardyf(zz); 0];

Cmx = [til"3 tilr2 til 1; 3*tiln2 2*til 1 0; tfln3 tfl~2 tfl 1; 3*tfln2 2*tfl 1
0]*(-1)*[mudx; 0; mudxf(zz); 0];

Cmy = [til*3 il*2 til 1; 3*tiln2 2*til 1 0; tfIn3 tfl~2 tfl 1; 3*tflr2 2*tfl 1
0]7(-1)*[mudy; 0; mudyf(zz); 0];

traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy" tfl];
end

options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]’);

[t, g] = ode45('improvedstat', tspan, q0); % calculates the x, y position based on
time

figure(1);
clf(1);
nextT = 0;
axis([-8 18 -3 13]);
axis('manual’);
xlabel('X (m)");
ylabel('Y (m)’);
title('Motion of Platoon Units with the Statistical Controller');
hold;
theta = 0:0.01:2*pi;
[a,b]=size ( Xobst);
for (i=1:b)
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));
end
[a,c]=size (Xmine);
for (i=1:c)
mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
plot(mine(1, :), mine(2, :));
end
robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
clear M;
col =[g,r,'b, 'c,'m,'y];
for (i = 1:length(t))
if t(i) >= nextT % everytime, T, draw and color robot..
for (j = 1:num)
fillrobot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
end
nextT = nextT + 0.05; % at next time T
end
M(i) = getframe;
% pause
end
axis(‘equal’);
axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
hold off;

%labelling the plot

for h=1:(length(Xobst))
gtext(['Obstacle #,num2str(h)]);

end

for p=1:(length(Xmine))
gtext(['Mine #,num2str(p)]);

end

for j=1:num
gtext(['Unit #',num2str(j)]);

end

figure(2)

clf(2);

fori=1:6
subplot(3,2,i);
axis([0 15 0 15]);
axis('manual’);
title(['Unit #, num2str(i)]);
ylabel('Y (m)");
ifi>4
xlabel('’X (m)");
end

hold
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plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths xlabel('Time (s)");

[a,b]=size ( Xobst); %plot individual obstacles ylabel('Variance Y ');
theta = 0:0.01:2*pi; end
for (i=1:b) legend(‘actual values', 'desired values');
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle hold
plot(obst(1, :), obst(2, 3)); Y%create movie avi
end %figure(4)
[c,d]=size ( Xmine); % plot individual mines %movie2avi(M,'test2.avi','FPS', 10,'Quality’,99);
for (i=1:d)
mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing collision = 0;
the obstacle min_dist = 1000;
plot(mine(1, :), mine(2, :)); for i = 1:length(q)
end X=1[;
hold off for j = 1:num
end X=X, [ad, j); adi, jFnum)]];
xmean = mean(q(:, 1:num)")"; end
ymean = mean(q(:, num+1:2*num)’)’; fork=1:2
xvar = var(q(:, 1:num))’; for I = k+1:num
yvar = var(q(:, num+1:2*num)’)’; dist = X(:, k) - X(:, I);
dist = sqrt(dist*dist);
figure(3) if (dist < min_dist)
clf(3); min_dist = dist;
subplot(2,2,1) end
plot(t, xmean,'b:’); if (dist < 0.06*sqrt(2))
hold; error(‘Collison!");
[xx, qq] = size(traj_hist); end
fori=1:xx end
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’; end
Cmx = traj_hist(i, 9:12)", end
plot(T, Cmx(1)*T.A3 + Cmx(2)*T."2 + Cmx(3)*T + Cmx(4), '-);
title('Platoon Tracking Mean X Errors');
xlabel('Time (s)");
ylabel('Mean X (m)");
end
hold
subplot(2,2,2)
plot(t, ymean,'b:’);
hold;
for i = 1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmy = traj_hist(i, 13:16)";
plot(T, Cmy(1)*T.”3 + Cmy(2)*T.”2 + Cmy(3)*T + Cmy(4), '-);

title('Platoon Tracking Mean Y Errors');
xlabel('Time (s)");
ylabel('Mean Y (m)");
end
hold
subplot(2,2,3)
plot(t, xvar,'b:");
hold;
fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cx = traj_hist(i, 1:4)"
plot(T, Cx(1)*T.A3 + Cx(2)*T.A2 + Cx(3)*T + Cx(4), 'r-);
title('Platoon Tracking Variance X Errors');
xlabel('Time (s)");
ylabel('Variance X);
end
hold
subplot(2,2,4)
plot(t, yvar,'b:");
hold;
fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cy = traj_hist(i, 5:8)';
plot(T, Cy(1)*T.A3 + Cy(2)*T.»2 + Cy(3)*T + Cy(4), 'r-);
title('Platoon Tracking Variance Y Errors');



%Appendix |

% Yong Tan

%Tridnet Scholar project

function gdot = plain6test(t, q)

% function show the statistical controllers work in an
%environment with mines and obstacles.

global Km Kv Ka

global mudx vardx mudxf vardxf mux

global mudy vardy mudyf vardyf muy

global R RAD RRAD Radmine

global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine

global traj_hist

%C terms are used to control tragectories.

%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,

findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);

closestobst=findobst(1,:);

posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values

varx = var(q(1:num)); % variance of x

vary = var(q(hum+1:2*num)); % variance of y

x_d = mudxf(leg);

y_d = mudyf(leg);

magnitude=sqrt((x_d - mux)"2+ (y_d - muy)"2); % distance from centroid of swarm to

waypoint

%waypoint changes if the time is
for mm = 1:length(mudxf)

if (t < traj_hist(mm, 17))

break;

end
end
leg = mm;
%calculated trajectory projection based on each leg
Cx = traj_hist(leg, 1:4)";
Cy = traj_hist(leg, 5:8)";
Cmx = traj_hist(leg, 9:12)";
Cmy = traj_hist(leg, 13:16)";

mudx = Cmx"*[t"3 t"2 t 1]'; %desired x mean position
mudy = Cmy"*[t"3 t"2 t 1]'; %desired y mean position
dmudx = Cmx"*[3*t"2 2*t 1 0]'; %desired vx mean velocity, derivatives
dmudy = Cmy'*[3*t"2 2*t 1 0]'; %desired vy mean velocity, derivatives

varxt = Cx*[t"3 t"2 t 1]'; %desired x position variance

varyt = Cy*[t"3 t"2 t 1]'; %desired y position variance

dvarxt = Cx"*[3*t"2 2*t 1 0]'; %desired vx velocity variance, derivatives

dvaryt = Cy*[3*t"2 2*t 1 0]'; %desired vy velocity variance, derivatives
t

J = [L/num*(ones(1,numy)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x

Jy = [J(1, 3); 2/(num-1)*(q(num+1:2*num)’ - muy)]; %alternate matrix defined by
state -diff from mean iny

J =[J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots

Jp = I*(I*JI)N-1); % Moore-Penrose pseudo inverse T ( resultant- 3by 8
matrix)

% attractive vectors to keep swarm moving forward

xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term

xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term

xd = [xa; xay];%

Yp*rrrkirhikiiikk generating subsumption in a single robot
kR

% function to calculate repulsion from each robot

irrep = zeros(2*num, 1);

for (i = 1:num)

a1=q(i);

g2=q(i+num);

Xactm=Xmine(posmine(i)); % actual X position of mine
Yactm=Ymine(posmine(i)); % actual Y position of mine

repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); % repulsive vectors from mines
pot(i)=repelmine(1);
pot(i+num)=repelmine(2);

% repulsive vectors away from obstacles
Xactobst=Xobst(posobst(i)); % designating the mines
Yactobst=Yobst(posobst(i));

repobst=findreppot(q1,q2,Xactobst, Yactobst,R); % repulsive vector from obstacles
potx(i)=repobst(1);
potx(i+num)=repobst(2);

totalpot(i)=pot(i)+potx(i);
totalpot(i+num)=pot(i+num)+potx(i+num);
min_dis = 10000;
if (i<=0)
for j = 1:num
if (i ~=])
dis = sqrt((q() - ())*2 + (g(i+num) - q(j+num))"2) - 0.2;
if ((dis < min_dis)& (dis < RRAD))
angle = atan2(q(j+num) - q(i+num), q() - q(i));
min_dis = dis;
end
end
end
if (min_dis < RRAD)
irrep(i) = cos(angle)*(1/(min_dis) - 1/(RRAD)); % added 1/RAD term repulsive
potential in x
irrep(i+num) = sin(angle)*(1/(min_dis) - 1/(RRAD)); % added
end
totalpot(i) = totalpot(i) + 0.5*irrep(i);
totalpot(i+num) = totalpot(i+num) + 0.5%irrep(i+num);
end
end

qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(totalpot’);
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% Appendix J

% Yong Tan, Trident Scholar Project

% This file shows how the hybrid controller was implemented with subsumption
implemented in the

Y%statistical controller

global mudx vardx mudxf vardxf % global variables of changes in mean and variance of

X
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of

y

global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num

global leg tf Xmine Ymine

global traj_hist

global AE F

global avoid_hist XR YR

global xydifferences

traj_hist = [J;

num=6; % number of robots
avoid_hist = zeros(num, 1);

R=1, % Radius of obstacle
% XOFF = 3; % x offset fixed
% YOFF =1, % y offset fixed

mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf =[5 3 5];
vardyf = [3 5 3];

Km =3; % 3  motion constant

Kv =3; % 3  velocity constant

Ka=5 %1 % acceleration constant

RAD = 2; % minimum separtion distance between robots

RRAD =0.5; %1 % minimum distance between individual robots to obstacle
Radmine=0.3;

record = 0;

Xobst=[36 10 ];

Yobst=[484];

Xmine =[ 7 10];

Ymine =[ 10 6];

leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[012343.810502021 2.5];

XR=[ 0.9501 0.4103 0.8462 0.1509 0.8385 0.1365
0.2311 0.8936 0.5252 0.6979 0.5681 0.0118
0.6068 0.0579 0.2026 0.3784 0.3704 0.8939
0.4860 0.3529 0.6721 0.8600 0.7027 0.1991
0.8913 0.8132 0.8381 0.8537 0.5466 0.2987
0.7621 0.0099 0.0196 0.5936 0.4449 0.6614
0.4565 0.1389 0.6813 0.4966 0.6946 0.2844
0.0185 0.2028 0.3795 0.8998 0.6213 0.4692
0.8214 0.1987 0.8318 0.8216 0.7948 0.0648
0.4447 0.6038 0.5028 0.6449 0.9568 0.9883
0.6154 0.2722 0.7095 0.8180 0.5226 0.5828
0.7919 0.1988 0.4289 0.6602 0.8801 0.4235
0.9218 0.0153 0.3046 0.3420 0.1730 0.5155
0.7382 0.7468 0.1897 0.2897 0.9797 0.3340
0.1763 0.4451 0.1934 0.3412 0.2714 0.4329
0.4057 0.9318 0.6822 0.5341 0.2523 0.2259
0.9355 0.4660 0.3028 0.7271 0.8757 0.5798
0.9169 0.4186 0.5417 0.3093 0.7373 0.7600];

YR=[ 0.9669 0.4608 0.4199 0.6273 0.7036 0.7009
0.6649 0.4574 0.7537 0.6991 0.4850 0.9623
0.8704 0.4507 0.7939 0.3972 0.1146 0.7505

0.0099 0.4122 0.9200 0.4136 0.6649 0.7400
0.1370 0.9016 0.8447 0.6552 0.3654 0.4319
0.8188 0.0056 0.3678 0.8376 0.1400 0.6343
0.4302 0.2974 0.6208 0.3716 0.5668 0.8030
0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(q0(1:num)); % mean X at starting time

mudy = mean(qO(num+1: 2*num));% mean y at starting time
vardx = var(q0(1:num)); %initial varx

vardy = var(qO(num+1: 2*num));

for zz = 1 : 3 %number of waypoints
tfl = tf/3 + tf/3*(zz-1);
til = tfl - tf/3;
%polynomial interpolation
if (zz>1)
mudx = mudxf(zz-1);
mudy = mudyf(zz-1);
vardx = vardxf(zz-1);
vardy = vardyf(zz-1);
end
Cx = [tir3 tiln2 til 1; 3*tilh2 2*til 1 0; t"3 tfA2 tfl 1; 3*tfr2 2*tfl 1
0]*(-1)*[vardx; O; vardxf(zz); 0];
Cy = [ti*3 tilr2 til 1; 3*til"2 2*til 1 0; t"3 tfA2 tl 1; 3*tfr2 2*tfl 1
0]°(-1)*[vardy; O; vardyf(zz); 0];

Cmx = [til*3 til*2 til 1; 3*til"2 2*til 1 0; tfl3 tfr2 tfl 1; 3*tflr2 2*tfl 1
0]*(-1)*[mudx; 0; mudxf(zz); 0];

Cmy = [til"3 til*2 til 1; 3*tilr2 2+til 1 0; tflr3 tflh2 tfl 1; 3*tflr2 2*tfl 1
01*(-1)*[mudy; 0; mudyf(zz); O;

traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy" tfl];
end

figure(1);

clf(1);

hold;

options = odeset('RelTol', 1e-12, '‘AbsTol', 1e-10*[ones( 2*num,1)]");

[t, q] = ode45('statsump’, tspan, q0); % calculates the X, y position based on time

nextT = 0;
axis([-2 16 -3 14]);
axis('manual’);
xlabel('X (m)");
ylabel('Y (m)");
title('Motion of Platoon Units with the Hybrid Controller ');
%hold;
theta = 0:0.01:2*pi;
[a,b]=size ( Xobst);
for (i=1:b)
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));
end
[a,c]=size (Xmine);
for (i=1:c)

mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing

the obstacle
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plot(mine(1, :), mine(2, :));
end
robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
clear M;
col=[g,'r,'b",c, 'm,y];
for (i = 1:length(t))
if t(i) >= nextT % everytime, T, draw and color robot..
for (j = 1:num)
fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
end
nextT = nextT + 0.10; % at next time T
end
%M(i) = getframe;
%pause
end
axis(‘equal’);
axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
hold off;
%  %labelling the plot
%  for h=1:(length(Xobst))
% gtext(['Obstacle #',num2str(h)]);
% end
%  for p=1:(length(Xmine))
% gtext(['Mine #,num2str(p)]);
% end
%  for j=1l:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
fori=1:6
subplot(3,2,i);
axis([-2 16 -2 16));
axis('manual’);
title(['Unit #, num2str(i)]);
ylabel('Y (m)");
if i>4
xlabel('X (m)’);
end

hold
plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
[a,b]=size ( Xobst); %plot individual obstacles
theta = 0:0.01:2*pi;
for (i=1:b)
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));
end
[c,d]=size ( Xmine); % plot individual mines
for (i=1:d)
mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
plot(mine(1, :), mine(2, :));
end
hold off
end
xmean = mean(q(:, 1:num)’)’;
ymean = mean(q(:, num+1:2*num)’)’;
xvar = var(q(:, 1:num)’)’;
yvar = var(q(:, num+1:2*num)’)’;

figure(3)

clf(3);
subplot(2,2,1)
plot(t, xmean,'b:");
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hold;
[xx, qq] = size(traj_hist);
fori=1:xx

T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmx = traj_hist(i, 9:12)",
plot(T, Cmx(1)*T.A3 + Cmx(2)*T."2 + Cmx(3)*T + Cmx(4), '-);
title('Platoon Tracking Mean X Errors');
xlabel('Time (s)");
ylabel('Mean X (m)");

end

hold

subplot(2,2,2)

plot(t, ymean,'b:’);

hold;

fori=1:ixx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmy = traj_hist(i, 13:16)";
plot(T, Cmy(1)*T.”3 + Cmy(2)*T.”2 + Cmy(3)*T + Cmy(4), '-);

title('Platoon Tracking Mean Y Errors');

xlabel('Time (s)");
ylabel('Mean Y (m)");

end

hold

subplot(2,2,3)

plot(t, xvar,'b:");

hold;

fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cx = traj_hist(i, 1:4)"
plot(T, Cx(1)*T.A3 + Cx(2)*T.A2 + Cx(3)*T + Cx(4), 'r-);
title('Platoon Tracking Variance X Errors');
xlabel('Time (s)");
ylabel('Variance X);

end

hold

subplot(2,2,4)

plot(t, yvar,'b:");

hold;

fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cy = traj_hist(i, 5:8)';
plot(T, Cy(1)*T.A3 + Cy(2)*T.»2 + Cy(3)*T + Cy(4), 'r-);
title('Platoon Tracking Variance Y Errors');
xlabel('Time (s)");
ylabel('Variance Y *);

end

legend(‘actual values', 'desired values');

hold

collision = 0;

min_dist = 1000;

for i = 1:length(q)
X =

forj = 1:num
X=X, [a(, j); ad, j+num)]);
end

fork=1:2
for | = k+1:num
dist = X(:, k) - X(:, 1);
dist = sqrt(dist*dist);
if (dist < min_dist)
min_dist = dist;
end
if (dist < 0.06*sqrt(2))
error(‘Collison!’);
end
end
end
end



%Appendix K

% Yong Tan, Trident scholar project

% function to find the position of each individual robots
% based on their current location.

function gdot = statsump(t, q)

global Km Kv Ka

global mudx vardx mudxf vardxf mux

global mudy vardy mudyf vardyf muy

global R RAD RRAD Radmine

global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine

global traj_hist

global avoid_hist avoid_obst XR YR

global AE F

global xydifferences

%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=0.8;% gain of the mean

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,

findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);

posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values

varx = var(q(1:num)); % variance of x

vary = var(q(num+1:2*num)); % variance of y

x_d = mudxf(leg);

y_d = mudyf(leg);

magnitude=sqrt((x_d - mux)"2+ (y_d - muy)"2); % distance from centroid of swarm
to waypoint

%waypoint changes if the time is
for mm = 1:length(mudxf)

if (t < traj_hist(mm, 17))

break;

end
end
leg = mm;
%calculated trajectory projection based on each leg
Cx = traj_hist(leg, 1:4)";
Cy = traj_hist(leg, 5:8)";
Cmx = traj_hist(leg, 9:12)";
Cmy = traj_hist(leg, 13:16)";

mudx = Cmx"*[t"3 t"2 t 1]'; %desired x mean position
mudy = Cmy"*[t"3 t"2 t 1]'; %desired y mean position
dmudx = Cmx"*[3*t"2 2*t 1 0]'; %desired vx mean velocity, derivatives
dmudy = Cmy"*[3*t"2 2*t 1 0]'; %desired vy mean velocity, derivatives

varxt = Cx*[t"3 t"2 t 1]'; %desired x position variance

varyt = Cy"*[t"3 t"2 t 1]'; %desired y position variance

dvarxt = Cx*[3*t"2 2*t 1 0]'; %desired vx velocity variance, derivatives

dvaryt = Cy*[3*t"2 2*t 1 0]'; %desired vy velocity variance, derivatives
t

J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x
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Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by
state -diff from mean iny

J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots

Jp = I*(I*IWN(-1); % Moore-Penrose pseudo inverse T ( resultant- 3by 8
matrix)

% attractive vectors to keep swarm moving forward

xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term

xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term

xd = [xa; xay];%

anglevec = zeros(1,6); % store angles of the vectors
% find angle for each vector in grid
for f=1:num

al=q(f);

g2=q(f+num);

gridx=round(q1);

gridy=round(q2);

anglemat=[];
anglemat=set_angle;
L_F= length(F);
L_A=length ( A);
%A=ones( length(F));

J |
if ((z==gridx) && (j==gridy))
anglevec(f)=anglemat(z,j);
break;
end
end
end
anglevec(f);

end
distbtwnrobots=checksepdistance(q); % check distance between each robot

Ypririiriiriikik generating subsumption in a single robot
A

% function to calculate repulsion from each robot

%irrep = zeros(2*num, 1);

num_active = 0;

for (i = 1:num)

a1=q(i);
g2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
avoid_hist(i) = 1;

Xactm=Xmine(posmine(i)); % actual X position of mine
Yactm=Ymine(posmine(i)); % actual Y position of mine
figure(1);

plot( Xactm, Yactm,'gd");

repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine);
pot(i)=repelmine(1);

pot(i+num)=repelmine(2);

num_active = num_active + 1;

else
%% BEHAVIOR: AVOID OBSTACLE
if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1)))
avoid_hist(i) = 1;
Xactobst=Xobst(posobst(i));
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Yactobst=Yobst(posobst(i)); end
figure(1); end
plot( Xactobst, Yactobst,'r*');
qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot’);
repobst=findreppot(q1,q2,Xactobst,Yactobst,R);
pot(i)=repobst(1);
pot(i+num)=repobst(2);
num_active = num_active + 1;
else
avoid_hist(i) = 0;
%find largest distance between robots and the current mean
sepdist=findmaxsep(q1,92,mudx, mudy);

%% BEHAVIOR: AGGREGATION
if ((sepdist(1))> 6)

lengthc= sepdist(1);

anglec= sepdist(2);

pot(i)=lengthc * cos(anglec);
pot(i+num)=Ilengthc * sin(anglec);
num_active = num_active + 1;
else
%% BEHAVIOR: SEPARATION
checkclosest=[];
checkclosest=distbtwnrobots(i,:);
[Val, posi]=min(checkclosest);
px=[I;
eachrobotrepx=0;
eachrobotrepy=0;

if Val<1;
%check which robots are closer than 1
foric=1:num
valuedist =checkclosest(1,ic);
if valuedist<l
xxd=xydifferences(i,ic);
xyd=xydifferences(i,ic+num) ;

theta_ba=atan2(xyd, xxd);
px=(1/valuedist)*cos(theta_ba);
px2=(1/valuedist)*sin(theta_ba);

else
px=0;
px2=0;
end
eachrobotrepx=eachrobotrepx+px;
eachrobotrepy=eachrobotrepy+px2;
end

pot(i)=eachrobotrepx;
pot(i+num)=eachrobotrepy;
num_active = num_active + 1;

%% BEHAVIOR: RANDOM
else

if ((t > 0)&&(num_active < 3))
pot(i) = 0.5*XR(ceil(t), i);
pot(i+num) = 0.5*YR(ceil(t), i);
num_active = num_active + 1;

else
pot(i) = 0;
pot(i+num) = 0;
end
end
end

end



% Appendix L
% Yong Tan, Trident Scholar Project

% This file simulates the hybrid controller in a drift environment
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of

X
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of

y
global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,

global Xobst Yobst Cx Cy Cmx Cmy num
global leg tf Xmine Ymine

global traj_hist

global AEF

global avoid_hist XR YR

global xydifferences

traj_hist = [];

num=6; % number of robots
avoid_hist = zeros(num, 1);

R=1; % Radius of obstacle

mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf =[5 3 5];
vardyf = [3 5 3];

Km = 3; % 3  motion constant

Kv=3; % 3  velocity constant

Ka=5 %1 % acceleration constant

RAD = 2; % minimum separtion distance between robots

RRAD =0.5; %1 % minimum distance between individual robots to obstacle
Radmine=0.3;

record = 0;

Xobst=[36 10];
Yobst=[484];
Xmine =[ 7 10];
Ymine =[ 10 6];
leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[012343.8105020212.5];

XR=[ 0.9501 0.4103 0.8462 0.1509 0.8385 0.1365

0.2311 0.8936 0.5252 0.6979 0.5681
0.6068 0.0579 0.2026 0.3784 0.3704
0.4860 0.3529 0.6721 0.8600 0.7027
0.8913 0.8132 0.8381 0.8537 0.5466
0.7621 0.0099 0.0196 0.5936 0.4449
0.4565 0.1389 0.6813 0.4966 0.6946
0.0185 0.2028 0.3795 0.8998 0.6213
0.8214 0.1987 0.8318 0.8216 0.7948
0.4447 0.6038 0.5028 0.6449 0.9568
0.6154 0.2722 0.7095 0.8180 0.5226
0.7919 0.1988 0.4289 0.6602 0.8801
0.9218 0.0153 0.3046 0.3420 0.1730
0.7382 0.7468 0.1897 0.2897 0.9797
0.1763 0.4451 0.1934 0.3412 0.2714
0.4057 0.9318 0.6822 0.5341 0.2523
0.9355 0.4660 0.3028 0.7271 0.8757
0.9169 0.4186 0.5417 0.3093 0.7373

YR=[ 0.9669 0.4608 0.4199 0.6273 0.7036 0.7009

0.6649 0.4574 0.7537 0.6991 0.4850
0.8704 0.4507 0.7939 0.3972 0.1146
0.0099 0.4122 0.9200 0.4136 0.6649
0.1370 0.9016 0.8447 0.6552 0.3654
0.8188 0.0056 0.3678 0.8376 0.1400
0.4302 0.2974 0.6208 0.3716 0.5668

0.0118
0.8939
0.1991
0.2987
0.6614
0.2844
0.4692
0.0648
0.9883
0.5828
0.4235
0.5155
0.3340
0.4329
0.2259
0.5798
0.7600];

0.9623
0.7505
0.7400
0.4319
0.6343
0.8030

0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(gO(1:num)); % mean x at starting time

mudy = mean(qO(num+1: 2*num));% mean y at starting time
vardx = var(g0(1:num)); %initial varx

vardy = var(qO(num+1: 2*num));

for zz = 1 : 3 %number of waypoints
tfl = tf/3 + tf/3*(zz-1);
til = tfl - tf/3;
%polynomial interpolation
if (zz>1)
mudx = mudxf(zz-1);
mudy = mudyf(zz-1);
vardx = vardxf(zz-1);
vardy = vardyf(zz-1);
end
Cx = [tir3 tilr2 til 1; 3*til"2 2*til 1 0; t"3 tfA2 tl 1; 3*tfr2 2*tfl 1
0](-1)*[vardx; O; vardxf(zz); 0];
Cy = [ti*3 til"2 til 1; 3*til"2 2*til 1 0; tA3 tfn2 tl 1; 3*tfr2 2*tfl 1
0]7(-1)*[vardy; O; vardyf(zz); 0];

Cmx = [til"3 tilr2 til 1; 3*tiln2 2*til 1 0; tfIN3 tfl~2 tfl 1; 3*tfln2 2*tfl 1
0]7(-1)*[mudx; 0; mudxf(zz); 0];

Cmy = [til"3 til*2 til 1; 3*tiln2 2*til 1 0; tfln3 tflr2 tfl 1; 3*tfln2 2*tfl 1
0]*(-1)*[mudy; 0; mudyf(zz); 0];

traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy" tfl];
end

figure(1);

clf(1);

hold;

options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]’);

[t, g] = ode45('newstatsump’, tspan, q0); % calculates the x, y position based on

time

%plot vector fields

test;
nextT = 0;
axis([-2 16 -3 14]);
axis('manual’);
xlabel("X (m)");
ylabel('Y (m)’);

title("Motion of Platoon Units with the Hybrid Controller Without Vector

Compensation');
%hold;
theta = 0:0.01:2*pi;
[a,b]=size ( Xobst);
for (i=1:b)

obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the

obstacle
plot(obst(1, :), obst(2, 3));
end
[a,c]=size (Xmine);
for (i=1:c)

mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing

the obstacle
plot(mine(1, :), mine(2, :));
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end
robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
clear M;
col =g, r,'b, 'c,'m,'yT;
for (i = 1:length(t))
if t(i) >= nextT % everytime, T, draw and color robot..
for (j = 1:num)
fillrobot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
end
nextT = nextT + 0.10; % at next time T
end
%M(i) = getframe;
Y%pause
end
axis(‘equal’);
axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
hold off;
%  %labelling the plot
% for h=1:(length(Xobst))
% gtext(['Obstacle #,num2str(h)]);
% end
%  for p=1:(length(Xmine))
% gtext(['Mine #',num2str(p)]);
% end
%  for j=1l:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
fori=1:6
subplot(3,2,i);
axis([-2 16 -2 16]);
axis('manual’);
title(['Unit #', num2str(i)]);
ylabel('Y (m)’);
if i>4
xlabel('X (m)");
end

hold
plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
[a,b]=size ( Xobst); %plot individual obstacles
theta = 0:0.01:2*pi;
for (i=1:b)
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));
end
[c,d]=size ( Xmine); % plot individual mines
for (i=1:d)
mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
plot(mine(1, :), mine(2, :));
end
hold off
end
xmean = mean(q(:, 1:num)")’
ymean = mean(q(:, num+1:2*num)’)’;
xvar = var(q(:, 1:num)’)’;
yvar = var(q(:, num+1:2*num)')’;

figure(3)

clf(3);
subplot(2,2,1)
plot(t, xmean,'b:");
hold;
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[xx, qq] = size(traj_hist);

fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmx = traj_hist(i, 9:12)";
plot(T, Cmx(1)*T.A3 + Cmx(2)*T."2 + Cmx(3)*T + Cmx(4), '-);
title('Platoon Tracking Mean X Errors');
xlabel('Time (s)");
ylabel('Mean X (m)");

end

hold

subplot(2,2,2)

plot(t, ymean,'b:');

hold;

fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmy = traj_hist(i, 13:16);
plot(T, Cmy(1)*T.A3 + Cmy(2)*T."2 + Cmy(3)*T + Cmy(4), '-);

title('Platoon Tracking Mean Y Errors');

xlabel('Time (s)");
ylabel('Mean Y (m)");

end

hold

subplot(2,2,3)

plot(t, xvar,'b:");

hold;

fori= 1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cx = traj_hist(i, 1:4)"
plot(T, Cx(1)*T.A3 + Cx(2)*T.A2 + Cx(3)*T + Cx(4), 'r-);
title('Platoon Tracking Variance X Errors');
xlabel('Time (s)");
ylabel('Variance X *);

end

hold

subplot(2,2,4)

plot(t, yvar,'b:");

hold;

fori=1ixx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cy = traj_hist(i, 5:8)";
plot(T, Cy(1)*T."3 + Cy(2)*T.~2 + Cy(3)*T + Cy(4), 'r-);
title('Platoon Tracking Variance Y Errors');
xlabel('Time (s)");
ylabel('Variance Y ');

end

legend(‘actual values', 'desired values');

hold

collision = 0;

min_dist = 1000;

for i = 1:length(q)
X =

forj = 1:num
X=X, [a(, j); ad, j+num)]);
end

fork=1:2
for | = k+1:num
dist = X(:, k) - X(:, 1);
dist = sqrt(dist*dist);
if (dist < min_dist)
min_dist = dist;
end
if (dist < 0.06*sqrt(2))
error(‘Collison!’);
end
end
end
end



%Appendix M

% Yong Tan, Trident Scholar Project

% Function to run program that simulates movement of robots
% in a drift environment

function gqdot = newstatsump(t, q)
% function show the statistical controllers work in an
%environment with mines and obstacles.

global Km Kv Ka

global mudx vardx mudxf vardxf mux

global mudy vardy mudyf vardyf muy

global R RAD RRAD Radmine

global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine

global traj_hist

global avoid_hist avoid_obst XR YR

global AE F

global xydifferences

%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=0.8;% gain of the mean

% Kivx=0.25; % gain of the variance

% Kivy=0.8;

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,

findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);

posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values

varx = var(q(1:num)); % variance of x

vary = var(q(hum+1:2*num)); % variance of y

x_d = mudxf(leg);

y_d = mudyf(leg);

magnitude=sqrt((x_d - mux)*2+ (y_d - muy)"2); % distance from centroid of swarm

to waypoint

%waypoint changes if the time is
for mm = 1:length(mudxf)

if (t < traj_hist(mm, 17))

break;

end
end
leg = mm;
%calculated trajectory projection based on each leg
Cx = traj_hist(leg, 1:4)";
Cy = traj_hist(leg, 5:8)";
Cmx = traj_hist(leg, 9:12)";
Cmy = traj_hist(leg, 13:16)";

mudx = Cmx"*[t"3 t"2 t 1]'; %desired x mean position
mudy = Cmy"*[t"3 t"2 t 1]'; %desired y mean position
dmudx = Cmx"*[3*t"2 2*t 1 0]'; %desired vx mean velocity, derivatives
dmudy = Cmy'*[3*t"2 2*t 1 0]'; %desired vy mean velocity, derivatives

varxt = Cx*[t"3 t"2 t 1]'; %desired x position variance

varyt = Cy"*[t"3 t"2 t 1]'; %desired y position variance
dvarxt = Cx*[3*t"2 2*t 1 0]'; %desired vx velocity variance, derivatives
dvaryt = Cy™*[3*t"2 2*t 1 0]'; %desired vy velocity variance, derivatives

t

J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))’-mux)]; % matrix defined by
state and task function: difference from mean in x

Jy = [3(1, 3); 2/(hum-1)*(q(num+1:2*num)’ - muy)]; %alternate matrix defined by
state -diff from mean iny

J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots

Jp = I*(JI*I)WN-1); % Moore-Penrose pseudo inverse T ( resultant- 3by 8
matrix)

% attractive vectors to keep swarm moving forward

xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term

xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the
changes in mean and variance in y with feedforward term

xd = [xa; xay];%

anglevec = zeros(1,6); % store angles of the vectors
% find angle for each vector in grid
for f=1:num

al=q(f);

g2=q(f+num);

gridx=round(ql);

gridy=round(q2);

anglemat=[];
anglemat=set_angle;
L_F= length(F);
L_A=length ( A);
%A=ones( length(F));

forz=1:L_A
for j=1:.L_F
if ((z==gridx) && (j==gridy))
anglevec(f)=anglemat(z,j);
break;
end
end
end
anglevec(f);

end
distbtwnrobots=checksepdistance(q); % check distance between each robot

Yprrirkiriiriikik ganerating subsumption in a single robot
-
% function to calculate repulsion from each robot
%irrep = zeros(2*num, 1);
num_active = 0;
for (i = 1:num)
a1=q(i);
g2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
avoid_hist(i) = 1;

Xactm=Xmine(posmine(i)); % actual X position of mine
Yactm=Ymine(posmine(i)); % actual Y position of mine
figure(1);

plot( Xactm, Yactm,'gd’);

repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine);
pot(i)=repelmine(1);
pot(i+num)=repelmine(2);
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num_active = num_active + 1; end
else end

%% BEHAVIOR: AVOID OBSTACLE end

if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1))) end
avoid_hist(i) = 1; end
Xactobst=Xobst(posobst(i)); end
Yactobst=Yobst(posobst(i)); qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot')+5*[cos(anglevec'); sin(anglevec')] ;
figure(1);

plot( Xactobst, Yactobst,'r*');

repobst=findreppot(q1,q2,Xactobst,Yactobst,R);
pot(i)=repobst(1);
pot(i+num)=repobst(2);
num_active = num_active + 1;
else
avoid_hist(i) = 0;
%find largest distance between robots and the current mean
sepdist=findmaxsep(q1,92,mudx, mudy);

%% BEHAVIOR: AGGREGATION
if ((sepdist(1))> 6)

lengthc= sepdist(1);

anglec= sepdist(2);

pot(i)=lengthc * cos(anglec);
pot(i+num)=Ilengthc * sin(anglec);
num_active = num_active + 1;
else
%% BEHAVIOR: SEPARATION
checkclosest=[];
checkclosest=distbtwnrobots(i,:);
[Val, posi]=min(checkclosest);
px=[I;
eachrobotrepx=0;
eachrobotrepy=0;

if Val<1;
%check whcih robots are closer than 1
foric=1:num
valuedist =checkclosest(1,ic);
if valuedist<1
xxd=xydifferences(i,ic);
xyd=xydifferences(i,ic+num) ;

theta_ba=atan2(xyd, xxd);

px=(1/valuedist)*cos(theta_ba);

px2=(1/valuedist)*sin(theta_ba);
else

px=0;

px2=0;
end
eachrobotrepx=eachrobotrepx+pXx;
eachrobotrepy=eachrobotrepy+px2;

end

pot(i)=eachrobotrepx;
pot(i+num)=eachrobotrepy;
num_active = num_active + 1;
%% BEHAVIOR: RANDOM
else
%
if ((t > 0)&&(num_active < 3))
pot(i) = 0.5*XR(ceil(t), i);
pot(i+num) = 0.5*YR(ceil(t), i);
num_active = num_active + 1;
else
pot(i) = 0;
pot(i+num) = 0;



% Appendix N
% Yong Tan, Tridnet Scholar project
% This file compensates for the drift vector of hybrid controller

global mudx vardx mudxf vardxf % global variables of changes in mean and variance of

X
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of

y

global Km Kv Ka % motion, velocity and acceleration constants
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,
global Xobst Yobst Cx Cy Cmx Cmy num

global leg tf Xmine Ymine

global traj_hist

global AEF

global avoid_hist XR YR

global xydifferences

traj_hist = [];

num=6; % number of robots
avoid_hist = zeros(num, 1);

R=1; % Radius of obstacle

mudxf = [2 12 12];
mudyf = [10 10 0];
vardxf =[5 3 5];
vardyf =[3 5 3];

Km =3; % 3  motion constant

Kv =5; % 3  velocity constant

Ka=5; %1 % acceleration constant

RAD = 2; % minimum separtion distance between robots

RRAD =0.5; %1 % minimum distance between individual robots to obstacle
Radmine=0.3;

record = 0;

Xobst=[36 10 ];

Yobst=[484];

Xmine =[ 7 10];

Ymine =[ 10 6];

leg=1;

tf =18; % final time in sec
tspan = [0 tf]; % time span from 0-20 s

q0=[012343.810502021250000];

XR=[ 0.9501 0.4103 0.8462 0.1509 0.8385 0.1365
0.2311 0.8936 0.5252 0.6979 0.5681 0.0118
0.6068 0.0579 0.2026 0.3784 0.3704 0.8939
0.4860 0.3529 0.6721 0.8600 0.7027 0.1991
0.8913 0.8132 0.8381 0.8537 0.5466 0.2987
0.7621 0.0099 0.0196 0.5936 0.4449 0.6614
0.4565 0.1389 0.6813 0.4966 0.6946 0.2844
0.0185 0.2028 0.3795 0.8998 0.6213 0.4692
0.8214 0.1987 0.8318 0.8216 0.7948 0.0648
0.4447 0.6038 0.5028 0.6449 0.9568 0.9883
0.6154 0.2722 0.7095 0.8180 0.5226 0.5828
0.7919 0.1988 0.4289 0.6602 0.8801 0.4235
0.9218 0.0153 0.3046 0.3420 0.1730 0.5155
0.7382 0.7468 0.1897 0.2897 0.9797 0.3340
0.1763 0.4451 0.1934 0.3412 0.2714 0.4329
0.4057 0.9318 0.6822 0.5341 0.2523 0.2259
0.9355 0.4660 0.3028 0.7271 0.8757 0.5798
0.9169 0.4186 0.5417 0.3093 0.7373 0.7600];

YR=[ 0.9669 0.4608 0.4199 0.6273 0.7036 0.7009
0.6649 0.4574 0.7537 0.6991 0.4850 0.9623
0.8704 0.4507 0.7939 0.3972 0.1146 0.7505
0.0099 0.4122 0.9200 0.4136 0.6649 0.7400
0.1370 0.9016 0.8447 0.6552 0.3654 0.4319
0.8188 0.0056 0.3678 0.8376 0.1400 0.6343

0.4302 0.2974 0.6208 0.3716 0.5668 0.8030
0.8903 0.0492 0.7313 0.4253 0.8230 0.0839
0.7349 0.6932 0.1939 0.5947 0.6739 0.9455
0.6873 0.6501 0.9048 0.5657 0.9994 0.9159
0.3461 0.9830 0.5692 0.7165 0.9616 0.6020
0.1660 0.5527 0.6318 0.5113 0.0589 0.2536
0.1556 0.4001 0.2344 0.7764 0.3603 0.8735
0.1911 0.1988 0.5488 0.4893 0.5485 0.5134
0.4225 0.6252 0.9316 0.1859 0.2618 0.7327
0.8560 0.7334 0.3352 0.7006 0.5973 0.4222
0.4902 0.3759 0.6555 0.9827 0.0493 0.9614
0.8159 0.0099 0.3919 0.8066 0.5711 0.0721];

mudx = mean(q0(1:num)); % mean X at starting time

mudy = mean(qO(num+1: 2*num));% mean y at starting time
vardx = var(q0(1:num)); %initial varx

vardy = var(q0(num+1: 2*num));

for zz = 1 : 3 %number of waypoints
tfl = tf/3 + tf/3*(zz-1);
til = tfl - tf/3;
%polynomial interpolation
if (zz>1)
mudx = mudxf(zz-1);
mudy = mudyf(zz-1);
vardx = vardxf(zz-1);
vardy = vardyf(zz-1);
end
Cx = [tir3 tilr2 til 1; 3*til"2 2*til 1 0; t"3 tfA2 tl 1; 3*tfr2 2*tfl 1
0]*(-1)*[vardx; O; vardxf(zz); 0];
Cy = [ti*3 tilr2 til 1; 3*til"2 2*til 1 0; t"3 thA2 tl 1; 3*tfr2 2+*tfl 1
0]°(-1)*[vardy; O; vardyf(zz); 0];

Cmx = [til"3 tiln2 til 1; 3*tiln2 2*til 1 0; tf"3 tfiA2 tfl 1; 3*tfir2 2*tfl 1
0]*(-1)*[mudx; 0; mudxf(zz); 0];

Cmy = [til"3 til*2 til 1; 3*tilr2 2+til 1 0; tflr3 tflh2 tfl 1; 3*tflr2 2*tfl 1
01*(-1)*[mudy; 0; mudyf(zz); O;

traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy" tfl];
end

figure(1);
clf(1);
hold;
options = odeset('RelTol', 1e-12, '‘AbsTol', 1e-10*[ones( 2*num,1)]");
[t, q] = ode45(‘'veccompensate’, tspan, q0); % calculates the x, y position based on
time
test; %plot vector fields

nextT = 0;

axis([-2 16 -3 14]);

axis('manual’);

xlabel("X (m)");

ylabel('Y (m)’);

title("Motion of Platoon Units with the Hybrid Controller and Vector
Compensation');

%hold;

theta = 0:0.01:2*pi;

[a,b]=size ( Xobst);

for (i=1:b)

obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));

end

[a,c]=size (Xmine);

for (i=1:c)

mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing

the obstacle
plot(mine(1, :), mine(2, :));
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end
robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares
to represent the robots
clear M;
col =g, r,'b, 'c,'m,'yT;
for (i = 1:length(t))
if t(i) >= nextT % everytime, T, draw and color robot..
for (j = 1:num)
fillrobot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill
in shape and color of the simulated robots.
end
nextT = nextT + 0.10; % at next time T
end
%M(i) = getframe;
Y%pause
end
axis(‘equal’);
axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1,
max(max(q(:,7:12)))+1]);
hold off;
%  %labelling the plot
% for h=1:(length(Xobst))
% gtext(['Obstacle #,num2str(h)]);
% end
%  for p=1:(length(Xmine))
% gtext(['Mine #',num2str(p)]);
% end
%  for j=1l:num
% gtext(['Unit #',num2str(j)]);
% end
figure(2)
clf(2);
fori=1:6
subplot(3,2,i);
axis([-2 16 -2 16]);
axis('manual’);
title(['Unit #', num2str(i)]);
ylabel('Y (m)’);
if i>4
xlabel('X (m)");
end

hold
plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths
[a,b]=size ( Xobst); %plot individual obstacles
theta = 0:0.01:2*pi;
for (i=1:b)
obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the
obstacle
plot(obst(1, :), obst(2, 3));
end
[c,d]=size ( Xmine); % plot individual mines
for (i=1:d)
mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing
the obstacle
plot(mine(1, :), mine(2, :));
end
hold off
end
xmean = mean(q(:, 1:num)")’
ymean = mean(q(:, num+1:2*num)’)’;
xvar = var(q(:, 1:num)’)’;
yvar = var(q(:, num+1:2*num)')’;
figure(3)
clf(3);
subplot(2,2,1)
plot(t, xmean,'b:’);
hold;
[xx, qq] = size(traj_hist);
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fori= 1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmx = traj_hist(i, 9:12);
plot(T, Cmx(1)*T.A3 + Cmx(2)*T."2 + Cmx(3)*T + Cmx(4), '-);
title('Platoon Tracking Mean X Errors');
xlabel('Time (s)");
ylabel('Mean X (m)");

end

hold

subplot(2,2,2)

plot(t, ymean,'b:");

hold;

fori=1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cmy = traj_hist(i, 13:16)";
plot(T, Cmy(1)*T.”3 + Cmy(2)*T.”2 + Cmy(3)*T + Cmy(4), '-);

title('Platoon Tracking Mean Y Errors');

xlabel('Time (s)");
ylabel('Mean Y (m)");

end

hold

subplot(2,2,3)

plot(t, xvar,'b:’);

hold;

fori=1ixx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cx = traj_hist(i, 1:4)"
plot(T, Cx(1)*T.A3 + Cx(2)*T.A2 + Cx(3)*T + Cx(4), 'r-);
title('Platoon Tracking Variance X Errors');
xlabel('Time (s)");
ylabel('Variance X);

end

hold

subplot(2,2,4)

plot(t, yvar,'b:’);

hold;

for i = 1:xx
T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]’;
Cy = traj_hist(i, 5:8)";
plot(T, Cy(1)*T."3 + Cy(2)*T.~2 + Cy(3)*T + Cy(4), 'r-);
title('Platoon Tracking Variance Y Errors');
xlabel('Time (s)");
ylabel('Variance Y ');

end

legend(‘actual values', 'desired values');

hold

collision = 0;

min_dist = 1000;

for i = 1:length(q)
X=[:

forj=1:num
X =[X, [ad, i); adi, jFnum)]f;
end
fork=1:2
for I = k+1:num
dist = X(:, k) - X(:, I);
dist = sqrt(dist™*dist);
if (dist < min_dist)
min_dist = dist;
end
if (dist < 0.06*sqrt(2))
error(‘Collison!");

end
end
end
end



% Appendix O
% Yong Tan, Trident Scholar Project
% FUnction that runs to show how robots compensate for drift.

function gdot = veccompensate(t, q)
% function show the statistical controllers work in an
%environment with mines and obstacles.

global Km Kv Ka

global mudx vardx mudxf vardxf mux
global mudy vardy mudyf vardyf muy
global R RAD RRAD Radmine

global Xobst Yobst RADOBST Cx Cy Cmx Cmy num
global leg tf Xmine Ymine

global traj_hist

global avoid_hist avoid_obst XR YR
global AE F

global xydifferences

%C terms are used to control tragectories.
%Cx,Cy are variance tragectory controls
%Cmx,Cmy are mean trajectory controls
Ki=1;% gain of the mean

Kivx=1; % gain of the variance

Kivy=1;

feedforward = 1;% drive robots forward in jacobian

%check distance between robots and the mines,

findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position
closestdistmine=findmine(1,:); %find closest mine dist
posmine=findmine(2,:); % position of mine

%check distance between robots and the obstacles
findobst=checkdist(q, Xobst, Yobst, R);
closestobst=findobst(1,:);

posobst=findobst(2,:);

mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values

varx = var(q(1:num)); % variance of x

vary = var(q(num+1:2*num)); % variance of y

x_d = mudxf(leg);

y_d = mudyf(leg);

magnitude=sqrt((x_d - mux)*2+ (y_d - muy)"2); % distance from centroid of swarm

to waypoint

%waypoint changes if the time is
for mm = 1:length(mudxf)

if (t < traj_hist(mm, 17))

break;

end
end
leg = mm;
%calculated trajectory projection based on each leg
Cx = traj_hist(leg, 1:4)";
Cy = traj_hist(leg, 5:8)";
Cmx = traj_hist(leg, 9:12)";
Cmy = traj_hist(leg, 13:16)";

mudx = Cmx"*[t"3 t"2 t 1]'; %desired x mean position
mudy = Cmy"*[t"3 t*2 t 1]'; %desired y mean position
dmudx = Cmx"*[3*t"2 2*t 1 0]'; %desired vx mean velocity, derivatives
dmudy = Cmy'*[3*t"2 2*t 1 0]'; %desired vy mean velocity, derivatives

varxt = Cx*[t"3 t"2 t 1]'; %desired x position variance
varyt = Cy"*[t"3 t"2 t 1]'; %desired y position variance
dvarxt = Cx*[3*t"2 2*t 1 0]'; %desired vx velocity variance, derivatives
dvaryt = Cy*[3*t"2 2*t 1 0]'; %desired vy velocity variance, derivatives

t

J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by
state and task function: difference from mean in x

Jy = [3(1, 3); 2/(hum-1)*(q(num+1:2*num)’ - muy)]; %alternate matrix defined by
state -diff from mean iny

J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe
x and y characteristics for no. roobots

Jp = I*(JI*I)WN-1); % Moore-Penrose pseudo inverse T ( resultant- 3by 8
matrix)

% attractive vectors to keep swarm moving forward
xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt]; %the
changes in mean and variance in x with feedforward term

xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the

changes in mean and variance in y with feedforward term
xd = [xa; xay];%

anglevec = zeros(1,6); % store angles of the vectors
% find angle for each vector in grid
for f=1:num

ql=q(f);

g2=q(f+num);

gridx=round(ql);

gridy=round(q2);

anglemat=[];
anglemat=set_angle;
L_F= length(F);
L_A=length ( A);
%A=ones( length(F));

forz=1:L_A
for j=1:.L_F
if ((z==gridx) && (j==gridy))
anglevec(f)=anglemat(z,j);
break;
end
end
end
anglevec(f);
end
distbtwnrobots=checksepdistance(q); % check distance between each robot

Yprrixminiixikik ganerating subsumption in a single robot
% function to calculate repulsion from each robot

%irrep = zeros(2*num, 1);

num_active = 0;

for (i = 1:num)

al=q(i);
g2=q(i+num);

%% BEHAVIOR: AVOID MINE
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1)))
avoid_hist(i) = 1;

Xactm=Xmine(posmine(i)); % actual X position of mine
Yactm=Ymine(posmine(i)); % actual Y position of mine
figure(1);

plot( Xactm, Yactm,'gd’);

repelmine=findreppot(q1,92,Xactm,Yactm,Radmine);
pot(i)=repelmine(1);
pot(i+num)=repelmine(2);
num_active = num_active + 1;
else
%% BEHAVIOR: AVOID OBSTACLE
if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1)))
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avoid_hist(i) = 1; end
Xactobst=Xobst(posobst(i));

Yactobst=Yobst(posobst(i)); end
figure(1);

plot( Xactobst, Yactobst,'r*');
qdot = Jp*(xd+ [Ki*q(num*2+1); Kivx*q(num*2+2);Ki *q(hum*2+3);Kivy*q(num*2+4)]) +

repobst=findreppot(q1,q2,Xactobst, Yactobst,R); Ka*(eye(2*num) - Jp*J)*(pot')+4*[cos(anglevec'); sin(anglevec')] ;;
pot(i)=repobst(1); err = [mudx - mux; (varxt)-(varx); mudy - muy; (varyt)-(vary)];
pot(i+num)=repobst(2);
num_active = num_active + 1; qdot = [qdot; err];

else

avoid_hist(i) = 0;
%find largest distance between robots and the current mean
sepdist=findmaxsep(q1,q2,mudx, mudy);

%% BEHAVIOR: AGGREGATION
if ((sepdist(1))> 6)

lengthc= sepdist(1);

anglec= sepdist(2);

pot(i)=lengthc * cos(anglec);
pot(i+num)=lengthc * sin(anglec);
num_active = num_active + 1;
else
%% BEHAVIOR: SEPARATION
checkclosest=[];
checkclosest=distbtwnrobots(i,:);
[Val, posi]=min(checkclosest);
px=I;
eachrobotrepx=0;
eachrobotrepy=0;

if Val<1,
%check whcih robots are closer than 1
for ic=1:num
valuedist =checkclosest(1,ic);
if valuedist<1
xxd=xydifferences(i,ic);
xyd=xydifferences(i,ic+tnum) ;

theta_ba=atan2(xyd, xxd);

px=(1/valuedist)*cos(theta_ba);

px2=(1/valuedist)*sin(theta_ba);
else

px=0;

px2=0;
end
eachrobotrepx=eachrobotrepx+px;
eachrobotrepy=eachrobotrepy+px2;

end

pot(i)=eachrobotrepx;
pot(i+num)=eachrobotrepy;
num_active = num_active + 1;

%% BEHAVIOR: RANDOM
else
if ((t > 0)&&(num_active < 3))
pot(i) = 0.5*XR(ceil(t), i);
pot(i+num) = 0.5*YR(ceil(t), i);
num_active = num_active + 1;
else
pot(i) = 0;
pot(i+num) = 0;
end
end
end
end



